冲突中的科学传统:Rusconi-von Baer关于青蛙胚胎学的争论和细胞理论的发展。

IF 1.3 4区 生物学 Q3 BIOLOGY Theory in Biosciences Pub Date : 2021-02-01 Epub Date: 2020-11-03 DOI:10.1007/s12064-020-00325-3
Margherita Raineri, Erki Tammiksaar
{"title":"冲突中的科学传统:Rusconi-von Baer关于青蛙胚胎学的争论和细胞理论的发展。","authors":"Margherita Raineri,&nbsp;Erki Tammiksaar","doi":"10.1007/s12064-020-00325-3","DOIUrl":null,"url":null,"abstract":"<p><p>In 1835, the meaning of the cleavage furrows in the division of frog eggs was the cause of a heated argument between the Italian naturalist Mauro Rusconi and Karl Ernst von Baer. These furrows were first described by Prévost and Dumas (Ann Sci Nat 2:100-121, 129-149, 1824b) who did not realize they cut the egg into separate masses. Rusconi (Développement de la grenouille comune depuis le moment de sa naissance jusque a son état parfait, Giusti, Milano, 1826) hypothesized a connection between the furrows and a peculiar crystallization of the content of the egg which eventually produced elementary molecules as the building blocks of the embryo. von Baer (Arch Anat Phys Wiss Med 6:481-509, 1834) was the first to establish a link between the furrows and an active process of dichotomous division he considered to be the basis for all further development and differentiation. The present paper analyses the theoretical reasons behind these divergent interpretations and focuses attention on their implications for the development of the cell theory and the conceptions of life. Prévost, Dumas and Rusconi interpreted cleavage and the whole embryonic development in the light of eighteenth-century scientific theories and the French materialism of the early nineteenth century, which explained life in terms of ordered molecular movement. Starting from other premises partly rooted in German philosophy von Baer (1834) gave a totally different picture which anticipated the cell theory and modern embryology.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":"140 1","pages":"45-75"},"PeriodicalIF":1.3000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00325-3","citationCount":"0","resultStr":"{\"title\":\"Scientific traditions in conflict: the Rusconi-von Baer controversy on the embryology of frogs and the development of the cell theory.\",\"authors\":\"Margherita Raineri,&nbsp;Erki Tammiksaar\",\"doi\":\"10.1007/s12064-020-00325-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 1835, the meaning of the cleavage furrows in the division of frog eggs was the cause of a heated argument between the Italian naturalist Mauro Rusconi and Karl Ernst von Baer. These furrows were first described by Prévost and Dumas (Ann Sci Nat 2:100-121, 129-149, 1824b) who did not realize they cut the egg into separate masses. Rusconi (Développement de la grenouille comune depuis le moment de sa naissance jusque a son état parfait, Giusti, Milano, 1826) hypothesized a connection between the furrows and a peculiar crystallization of the content of the egg which eventually produced elementary molecules as the building blocks of the embryo. von Baer (Arch Anat Phys Wiss Med 6:481-509, 1834) was the first to establish a link between the furrows and an active process of dichotomous division he considered to be the basis for all further development and differentiation. The present paper analyses the theoretical reasons behind these divergent interpretations and focuses attention on their implications for the development of the cell theory and the conceptions of life. Prévost, Dumas and Rusconi interpreted cleavage and the whole embryonic development in the light of eighteenth-century scientific theories and the French materialism of the early nineteenth century, which explained life in terms of ordered molecular movement. Starting from other premises partly rooted in German philosophy von Baer (1834) gave a totally different picture which anticipated the cell theory and modern embryology.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":\"140 1\",\"pages\":\"45-75\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12064-020-00325-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-020-00325-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-020-00325-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

1835年,意大利博物学家毛罗·拉斯科尼和卡尔·恩斯特·冯·贝尔就青蛙卵分裂中卵裂沟的含义展开了激烈的争论。这些沟最早是由pracimvost和Dumas (Ann Sci Nat 2:100- 121,129 - 149,1824b)描述的,他们没有意识到它们把鸡蛋切成了不同的块状。Rusconi (Giusti, Milano, 1826)假设这些沟槽和卵子的特殊结晶之间存在联系,这种结晶最终产生了基本分子,作为胚胎的基本组成部分。von Baer (Arch Anat Phys Wiss Med 6:481-509, 1834)是第一个在沟槽和活跃的二分分裂过程之间建立联系的人,他认为这是所有进一步发展和分化的基础。本文分析了这些不同解释背后的理论原因,并重点关注它们对细胞理论和生命概念发展的影响。普莱姆沃斯特、杜马和拉斯科尼根据18世纪的科学理论和19世纪早期的法国唯物主义解释了卵裂和整个胚胎发育,后者用有序的分子运动来解释生命。冯·贝尔(1834)从其他部分植根于德国哲学的前提出发,给出了一个完全不同的图景,预测了细胞理论和现代胚胎学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scientific traditions in conflict: the Rusconi-von Baer controversy on the embryology of frogs and the development of the cell theory.

In 1835, the meaning of the cleavage furrows in the division of frog eggs was the cause of a heated argument between the Italian naturalist Mauro Rusconi and Karl Ernst von Baer. These furrows were first described by Prévost and Dumas (Ann Sci Nat 2:100-121, 129-149, 1824b) who did not realize they cut the egg into separate masses. Rusconi (Développement de la grenouille comune depuis le moment de sa naissance jusque a son état parfait, Giusti, Milano, 1826) hypothesized a connection between the furrows and a peculiar crystallization of the content of the egg which eventually produced elementary molecules as the building blocks of the embryo. von Baer (Arch Anat Phys Wiss Med 6:481-509, 1834) was the first to establish a link between the furrows and an active process of dichotomous division he considered to be the basis for all further development and differentiation. The present paper analyses the theoretical reasons behind these divergent interpretations and focuses attention on their implications for the development of the cell theory and the conceptions of life. Prévost, Dumas and Rusconi interpreted cleavage and the whole embryonic development in the light of eighteenth-century scientific theories and the French materialism of the early nineteenth century, which explained life in terms of ordered molecular movement. Starting from other premises partly rooted in German philosophy von Baer (1834) gave a totally different picture which anticipated the cell theory and modern embryology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
期刊最新文献
An evolutionary game theory for event-driven ecological population dynamics. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by FOF1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Forbidden codon combinations in error-detecting circular codes. A new symbiotic, holistic and gradualist model proposal for the concept of "living organism". Mathematical model of tumor immune microenvironment with application to the combined therapy targeting the PD-1/PD-L1 pathway and IL-10 cytokine antibody.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1