{"title":"以白细胞介素-6 为靶点治疗 COVID-19。","authors":"Yao Wang, Chen Liu, Xiaolong Miao, Deqiang Kong, Yingli Zhao, Weihua Gong, Xianfeng Ding","doi":"10.1684/ecn.2020.0453","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease 19 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in China and has spread worldwide with a significant rate of infection. Considering the elevated levels of proinflammatory cytokines in COVID-19, it is suggested that cytokine storms play a critical role in its pathogenesis, including acute respiratory distress syndrome (ARDS). However, there is no specific drug for preventing the cytokine release syndrome (CRS) caused by COVID-19. Indeed, interleukin 6 (IL-6) has been highlighted for its many biological functions, such as immune regulation, inflammatory response, and metabolism. Therapeutic blockade of the IL-6 signaling pathway is expected to reduce the excessive immune reponse observed in COVID-19. Currently, the IL-6 receptor antagonists tocilizumab and sarilumab, have been adopted for preventing CRS during the progression of COVID-19, and remarkable beneficial effects were observed by using these humanized monoclonal antibodies. Based on the pathogenesis of COVID-19, we reviewed the biological mechanism of IL-6 blockade in the treatment of SARS-CoV-2 infection and evaluated its clinical applications.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic targeting of interleukin-6 for the treatment of COVID-19.\",\"authors\":\"Yao Wang, Chen Liu, Xiaolong Miao, Deqiang Kong, Yingli Zhao, Weihua Gong, Xianfeng Ding\",\"doi\":\"10.1684/ecn.2020.0453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus disease 19 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in China and has spread worldwide with a significant rate of infection. Considering the elevated levels of proinflammatory cytokines in COVID-19, it is suggested that cytokine storms play a critical role in its pathogenesis, including acute respiratory distress syndrome (ARDS). However, there is no specific drug for preventing the cytokine release syndrome (CRS) caused by COVID-19. Indeed, interleukin 6 (IL-6) has been highlighted for its many biological functions, such as immune regulation, inflammatory response, and metabolism. Therapeutic blockade of the IL-6 signaling pathway is expected to reduce the excessive immune reponse observed in COVID-19. Currently, the IL-6 receptor antagonists tocilizumab and sarilumab, have been adopted for preventing CRS during the progression of COVID-19, and remarkable beneficial effects were observed by using these humanized monoclonal antibodies. Based on the pathogenesis of COVID-19, we reviewed the biological mechanism of IL-6 blockade in the treatment of SARS-CoV-2 infection and evaluated its clinical applications.</p>\",\"PeriodicalId\":11749,\"journal\":{\"name\":\"European cytokine network\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cytokine network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/ecn.2020.0453\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cytokine network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/ecn.2020.0453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Therapeutic targeting of interleukin-6 for the treatment of COVID-19.
Coronavirus disease 19 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in China and has spread worldwide with a significant rate of infection. Considering the elevated levels of proinflammatory cytokines in COVID-19, it is suggested that cytokine storms play a critical role in its pathogenesis, including acute respiratory distress syndrome (ARDS). However, there is no specific drug for preventing the cytokine release syndrome (CRS) caused by COVID-19. Indeed, interleukin 6 (IL-6) has been highlighted for its many biological functions, such as immune regulation, inflammatory response, and metabolism. Therapeutic blockade of the IL-6 signaling pathway is expected to reduce the excessive immune reponse observed in COVID-19. Currently, the IL-6 receptor antagonists tocilizumab and sarilumab, have been adopted for preventing CRS during the progression of COVID-19, and remarkable beneficial effects were observed by using these humanized monoclonal antibodies. Based on the pathogenesis of COVID-19, we reviewed the biological mechanism of IL-6 blockade in the treatment of SARS-CoV-2 infection and evaluated its clinical applications.
期刊介绍:
The journal that brings together all areas of work involving cytokines.
European Cytokine Network is an electronic journal that publishes original articles and abstracts every quarter to provide an essential bridge between researchers and clinicians with an interest in this cutting-edge field.
The journal has become a must-read for specialists in the field thanks to its swift publication and international circulation.
The journal is referenced in several databases, including Medline, which is testament to its scientific quality.