羟基磷灰石酸损浸液中磷维素活性及抑菌试验。

IF 3.4 Q2 BIOCHEMICAL RESEARCH METHODS Biochemistry Research International Pub Date : 2020-10-24 eCollection Date: 2020-01-01 DOI:10.1155/2020/8831311
Richard D Shipman, Sean D Doering, Jack R Hemsath, Eun Joo Lee, Jennifer E Grant
{"title":"羟基磷灰石酸损浸液中磷维素活性及抑菌试验。","authors":"Richard D Shipman,&nbsp;Sean D Doering,&nbsp;Jack R Hemsath,&nbsp;Eun Joo Lee,&nbsp;Jennifer E Grant","doi":"10.1155/2020/8831311","DOIUrl":null,"url":null,"abstract":"<p><p>Phosvitin, the most highly phosphorylated metal-binding protein found in nature, binds more than 100 calcium ions, and has been identified as an agent that could be used to generate biomineralization scaffolds. Because of published reports describing phosvitin's affinity for calcium and potential antibiotic activity, this study was undertaken in order to evaluate phosvitin for both antibiotic activity against common microorganisms and the ability to protect hydroxyapatite surfaces from acid damage. To more clearly define its antibiotic action, the effects of phosvitin on <i>Micrococcus luteus</i>, <i>P. mirabilis</i>, <i>B. cereus</i>, <i>E. coli</i>, and <i>S. epidermidis</i> were evaluated. In both Kirby-Bauer tests and liquid culture growth inhibition assays, phosvitin inhibited <i>M. luteus</i>, a microorganism that thrives in the human mouth, but not the other bacteria tested. The MIC of phosvitin was determined to be 31.3 <i>μ</i>g/mL when delivered in 1 mM CaCl<sub>2</sub> but was 0.5 mg/mL in the absence of added calcium. Expanding on the potential impacts of phosvitin on the mouth, its action was evaluated in a model of tooth decay represented by acid-damaged hydroxyapatite discs. SEM, AFM, and FAAS analyses revealed that pretreatment of discs with phosvitin modulated the damage-induced morphology and topography changes associated with acid-damaged discs.</p>","PeriodicalId":8826,"journal":{"name":"Biochemistry Research International","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8831311","citationCount":"0","resultStr":"{\"title\":\"Activity of Phosvitin in Hydroxyapatite Acid-Damage Immersion and Antimicrobial Assays.\",\"authors\":\"Richard D Shipman,&nbsp;Sean D Doering,&nbsp;Jack R Hemsath,&nbsp;Eun Joo Lee,&nbsp;Jennifer E Grant\",\"doi\":\"10.1155/2020/8831311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosvitin, the most highly phosphorylated metal-binding protein found in nature, binds more than 100 calcium ions, and has been identified as an agent that could be used to generate biomineralization scaffolds. Because of published reports describing phosvitin's affinity for calcium and potential antibiotic activity, this study was undertaken in order to evaluate phosvitin for both antibiotic activity against common microorganisms and the ability to protect hydroxyapatite surfaces from acid damage. To more clearly define its antibiotic action, the effects of phosvitin on <i>Micrococcus luteus</i>, <i>P. mirabilis</i>, <i>B. cereus</i>, <i>E. coli</i>, and <i>S. epidermidis</i> were evaluated. In both Kirby-Bauer tests and liquid culture growth inhibition assays, phosvitin inhibited <i>M. luteus</i>, a microorganism that thrives in the human mouth, but not the other bacteria tested. The MIC of phosvitin was determined to be 31.3 <i>μ</i>g/mL when delivered in 1 mM CaCl<sub>2</sub> but was 0.5 mg/mL in the absence of added calcium. Expanding on the potential impacts of phosvitin on the mouth, its action was evaluated in a model of tooth decay represented by acid-damaged hydroxyapatite discs. SEM, AFM, and FAAS analyses revealed that pretreatment of discs with phosvitin modulated the damage-induced morphology and topography changes associated with acid-damaged discs.</p>\",\"PeriodicalId\":8826,\"journal\":{\"name\":\"Biochemistry Research International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/8831311\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8831311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8831311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Phosvitin是自然界中发现的高度磷酸化的金属结合蛋白,可结合100多种钙离子,已被确定为可用于生成生物矿化支架的试剂。由于已发表的报告描述了phosvitin对钙的亲和力和潜在的抗生素活性,因此本研究旨在评估phosvitin对普通微生物的抗生素活性和保护羟基磷灰石表面免受酸损伤的能力。为了更清楚地确定其抗生素作用,我们评估了磷维素对黄体微球菌、神奇假单胞菌、蜡样芽孢杆菌、大肠杆菌和表皮葡萄球菌的作用。在Kirby-Bauer试验和液体培养生长抑制试验中,磷维素抑制了黄体分枝杆菌(一种在人口腔中繁殖的微生物),但对其他被测试的细菌没有作用。以1 mM CaCl2给药时,磷维素的MIC为31.3 μg/mL,不添加钙时,MIC为0.5 mg/mL。为了进一步研究磷灰石素对口腔的潜在影响,我们在一个以酸损伤羟基磷灰石盘为代表的蛀牙模型中评估了磷灰石素的作用。扫描电镜、原子力显微镜和原子吸收光谱分析显示,用磷维素预处理后的圆盘可以调节与酸损伤圆盘相关的损伤诱导的形态学和形貌变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activity of Phosvitin in Hydroxyapatite Acid-Damage Immersion and Antimicrobial Assays.

Phosvitin, the most highly phosphorylated metal-binding protein found in nature, binds more than 100 calcium ions, and has been identified as an agent that could be used to generate biomineralization scaffolds. Because of published reports describing phosvitin's affinity for calcium and potential antibiotic activity, this study was undertaken in order to evaluate phosvitin for both antibiotic activity against common microorganisms and the ability to protect hydroxyapatite surfaces from acid damage. To more clearly define its antibiotic action, the effects of phosvitin on Micrococcus luteus, P. mirabilis, B. cereus, E. coli, and S. epidermidis were evaluated. In both Kirby-Bauer tests and liquid culture growth inhibition assays, phosvitin inhibited M. luteus, a microorganism that thrives in the human mouth, but not the other bacteria tested. The MIC of phosvitin was determined to be 31.3 μg/mL when delivered in 1 mM CaCl2 but was 0.5 mg/mL in the absence of added calcium. Expanding on the potential impacts of phosvitin on the mouth, its action was evaluated in a model of tooth decay represented by acid-damaged hydroxyapatite discs. SEM, AFM, and FAAS analyses revealed that pretreatment of discs with phosvitin modulated the damage-induced morphology and topography changes associated with acid-damaged discs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Research International
Biochemistry Research International BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
14 weeks
期刊最新文献
Proteomics and Bioinformatics Investigations Link Overexpression of FGF8 and Associated Hub Genes to the Progression of Ovarian Cancer and Poor Prognosis. Effects of Low Concentration of Glyphosate-Based Herbicide on Genotoxic, Oxidative, Inflammatory, and Behavioral Meters in Danio rerio (Teleostei and Cyprinidae). In Vitro Antibacterial and Antioxidant Activities, Pharmacokinetics, and In Silico Molecular Docking Study of Phytochemicals from the Roots of Ziziphus spina-christi. MIP-4 is Induced by Bleomycin and Stimulates Cell Migration Partially via Nir-1 Receptor. In Vitro Antibacterial, Antioxidant, Cytotoxicity Activity, and In Silico Molecular Modelling of Compounds Isolated from Roots of Hydnora johannis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1