{"title":"代理与问责:脑机接口的伦理考虑。","authors":"Erika J Davidoff","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs) are systems in which a user's real-time brain activity is used to control an external device, such as a prosthetic limb. BCIs have great potential for restoring lost motor functions in a wide range of patients. However, this futuristic technology raises several ethical questions, especially concerning the degree of agency a BCI affords its user and the extent to which a BCI user ought to be accountable for actions undertaken via the device. This paper examines these and other ethical concerns found at each of the three major parts of the BCI system: the sensor that records neural activity, the decoder that converts raw data into usable signals, and the translator that uses these signals to control the movement of an external device.</p>","PeriodicalId":93150,"journal":{"name":"The Rutgers journal of bioethics","volume":"11 ","pages":"9-20"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654969/pdf/nihms-1640382.pdf","citationCount":"0","resultStr":"{\"title\":\"Agency and Accountability: Ethical Considerations for Brain-Computer Interfaces.\",\"authors\":\"Erika J Davidoff\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-computer interfaces (BCIs) are systems in which a user's real-time brain activity is used to control an external device, such as a prosthetic limb. BCIs have great potential for restoring lost motor functions in a wide range of patients. However, this futuristic technology raises several ethical questions, especially concerning the degree of agency a BCI affords its user and the extent to which a BCI user ought to be accountable for actions undertaken via the device. This paper examines these and other ethical concerns found at each of the three major parts of the BCI system: the sensor that records neural activity, the decoder that converts raw data into usable signals, and the translator that uses these signals to control the movement of an external device.</p>\",\"PeriodicalId\":93150,\"journal\":{\"name\":\"The Rutgers journal of bioethics\",\"volume\":\"11 \",\"pages\":\"9-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654969/pdf/nihms-1640382.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Rutgers journal of bioethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Rutgers journal of bioethics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agency and Accountability: Ethical Considerations for Brain-Computer Interfaces.
Brain-computer interfaces (BCIs) are systems in which a user's real-time brain activity is used to control an external device, such as a prosthetic limb. BCIs have great potential for restoring lost motor functions in a wide range of patients. However, this futuristic technology raises several ethical questions, especially concerning the degree of agency a BCI affords its user and the extent to which a BCI user ought to be accountable for actions undertaken via the device. This paper examines these and other ethical concerns found at each of the three major parts of the BCI system: the sensor that records neural activity, the decoder that converts raw data into usable signals, and the translator that uses these signals to control the movement of an external device.