动脉粥样硬化中内皮功能障碍维持免疫反应:主流药物无效的潜在原因。

IF 4.3 4区 医学 Q2 IMMUNOLOGY International Reviews of Immunology Pub Date : 2022-01-01 Epub Date: 2021-01-13 DOI:10.1080/08830185.2020.1866568
Shamima Akhtar, Alpana Sharma
{"title":"动脉粥样硬化中内皮功能障碍维持免疫反应:主流药物无效的潜在原因。","authors":"Shamima Akhtar,&nbsp;Alpana Sharma","doi":"10.1080/08830185.2020.1866568","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial dysfunction (ED) forms the cornerstone in the development of atherosclerotic lesions that clinically manifest as ischemia, myocardial infarction, stroke or peripheral arterial disease. ED can be triggered by various risk factors including hypercholesterolemia, hypertension, hyperhomocystenemia and chronic low-grade inflammation. These risk factors also activate immune response systemically. Current drugs used for managing atherosclerosis not only aid in subsiding the risk factor but also suppress the immune activation. Nonetheless, their effectiveness in treating ED is still questionable. Here, we discuss how pathologic molecules and processes pertaining to ED can activate innate and adaptive arms of the immune system leading to disease progression even in the absence of cardiovascular risk factors and the potential of the current drugs, used in the management of atherosclerotic patients, in reversing them. We mainly focus on activated endothelium, endothelial microparticles, mechanically stretched endothelial cells, endothelial mesenchymal transition and endothelial glycocalyx sheds.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1866568","citationCount":"2","resultStr":"{\"title\":\"Endothelial dysfunction sustains immune response in atherosclerosis: potential cause for ineffectiveness of prevailing drugs.\",\"authors\":\"Shamima Akhtar,&nbsp;Alpana Sharma\",\"doi\":\"10.1080/08830185.2020.1866568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular endothelial dysfunction (ED) forms the cornerstone in the development of atherosclerotic lesions that clinically manifest as ischemia, myocardial infarction, stroke or peripheral arterial disease. ED can be triggered by various risk factors including hypercholesterolemia, hypertension, hyperhomocystenemia and chronic low-grade inflammation. These risk factors also activate immune response systemically. Current drugs used for managing atherosclerosis not only aid in subsiding the risk factor but also suppress the immune activation. Nonetheless, their effectiveness in treating ED is still questionable. Here, we discuss how pathologic molecules and processes pertaining to ED can activate innate and adaptive arms of the immune system leading to disease progression even in the absence of cardiovascular risk factors and the potential of the current drugs, used in the management of atherosclerotic patients, in reversing them. We mainly focus on activated endothelium, endothelial microparticles, mechanically stretched endothelial cells, endothelial mesenchymal transition and endothelial glycocalyx sheds.</p>\",\"PeriodicalId\":14333,\"journal\":{\"name\":\"International Reviews of Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08830185.2020.1866568\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08830185.2020.1866568\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08830185.2020.1866568","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

血管内皮功能障碍(ED)是临床上表现为缺血、心肌梗死、中风或外周动脉疾病的动脉粥样硬化病变发展的基础。ED可由多种危险因素引发,包括高胆固醇血症、高血压、高同型系统血症和慢性低度炎症。这些危险因素也会激活全身的免疫反应。目前用于控制动脉粥样硬化的药物不仅有助于降低风险因素,而且还能抑制免疫激活。尽管如此,它们在治疗ED方面的有效性仍然值得怀疑。在这里,我们讨论了与ED相关的病理分子和过程如何激活免疫系统的先天和适应性臂,导致疾病进展,即使在没有心血管危险因素的情况下,以及目前用于动脉粥样硬化患者管理的药物在逆转它们方面的潜力。我们主要关注活化内皮、内皮微粒、机械拉伸内皮细胞、内皮间质转化和内皮糖萼脱落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endothelial dysfunction sustains immune response in atherosclerosis: potential cause for ineffectiveness of prevailing drugs.

Vascular endothelial dysfunction (ED) forms the cornerstone in the development of atherosclerotic lesions that clinically manifest as ischemia, myocardial infarction, stroke or peripheral arterial disease. ED can be triggered by various risk factors including hypercholesterolemia, hypertension, hyperhomocystenemia and chronic low-grade inflammation. These risk factors also activate immune response systemically. Current drugs used for managing atherosclerosis not only aid in subsiding the risk factor but also suppress the immune activation. Nonetheless, their effectiveness in treating ED is still questionable. Here, we discuss how pathologic molecules and processes pertaining to ED can activate innate and adaptive arms of the immune system leading to disease progression even in the absence of cardiovascular risk factors and the potential of the current drugs, used in the management of atherosclerotic patients, in reversing them. We mainly focus on activated endothelium, endothelial microparticles, mechanically stretched endothelial cells, endothelial mesenchymal transition and endothelial glycocalyx sheds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
4.00%
发文量
24
期刊介绍: This review journal provides the most current information on basic and translational research in immunology and related fields. In addition to invited reviews, the journal accepts for publication articles and editorials on relevant topics proposed by contributors. Each issue of International Reviews of Immunology contains both solicited and unsolicited review articles, editorials, and ''In-this-Issue'' highlights. The journal also hosts reviews that position the authors'' original work relative to advances in a given field, bridging the gap between annual reviews and the original research articles. This review series is relevant to all immunologists, molecular biologists, microbiologists, translational scientists, industry researchers, and physicians who work in basic and clinical immunology, inflammatory and allergic diseases, vaccines, and additional topics relevant to medical research and drug development that connect immunology to disciplines such as oncology, cardiovascular disease, and metabolic disorders. Covered in International Reviews of Immunology: Basic and developmental immunology (innate and adaptive immunity; inflammation; and tumor and microbial immunology); Clinical research (mechanisms of disease in man pertaining to infectious diseases, autoimmunity, allergy, oncology / immunology); and Translational research (relevant to biomarkers, diagnostics, vaccines, and drug development).
期刊最新文献
The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases. Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting. FUNDC1 mediated mitochondria-dependent ferroptosis of epithelial cells in model of asthma by FBXL2/ar/GPX4 signaling pathway of SUMO1 at K136. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1