多药耐药和纳米药物方法克服耐多药耐药的见解。

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Critical Reviews in Therapeutic Drug Carrier Systems Pub Date : 2020-01-01 DOI:10.1615/CritRevTherDrugCarrierSyst.2020025052
Imran Shair Mohammad, Wei He, Lifang Yin
{"title":"多药耐药和纳米药物方法克服耐多药耐药的见解。","authors":"Imran Shair Mohammad,&nbsp;Wei He,&nbsp;Lifang Yin","doi":"10.1615/CritRevTherDrugCarrierSyst.2020025052","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance (MDR) remains a major obstacle to ensure effective chemotherapy in cancer patients. Several factors could be associated with cancer cells' drug resistance such as overexpression of P-glycoprotein (P-gp), cancer stem cells (CSCs), defect in apoptosis, mutation and alteration in DNA repair pathways, angiogenesis, autophagy, and modulation in metabolic enzymes. Until now, drug efflux by ABC transporters has been a univocal and well-established mechanism of chemotherapeutic associated drug resistance. To explore the mechanics involved in ABC transporter associated drug resistance, many crucial studies have been conducted from identification of drug binding sites to elucidation of their structure. Due to our continuous battle with drug resistance, several strategies have been employed to combat MDR, including P-gp modulators, siRNAs, antibodies, as well as peptides. Furthermore, various nanoparticle and different effective combination nanomedicine strategies also suggest some exciting results. Thus, to improve nanomedicine approaches to overcome MDR, in this evolutionary review, we have focused on fundamentals of possible strategies as well as the latest accomplishments to reverse MDR.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Insight on Multidrug Resistance and Nanomedicine Approaches to Overcome MDR.\",\"authors\":\"Imran Shair Mohammad,&nbsp;Wei He,&nbsp;Lifang Yin\",\"doi\":\"10.1615/CritRevTherDrugCarrierSyst.2020025052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidrug resistance (MDR) remains a major obstacle to ensure effective chemotherapy in cancer patients. Several factors could be associated with cancer cells' drug resistance such as overexpression of P-glycoprotein (P-gp), cancer stem cells (CSCs), defect in apoptosis, mutation and alteration in DNA repair pathways, angiogenesis, autophagy, and modulation in metabolic enzymes. Until now, drug efflux by ABC transporters has been a univocal and well-established mechanism of chemotherapeutic associated drug resistance. To explore the mechanics involved in ABC transporter associated drug resistance, many crucial studies have been conducted from identification of drug binding sites to elucidation of their structure. Due to our continuous battle with drug resistance, several strategies have been employed to combat MDR, including P-gp modulators, siRNAs, antibodies, as well as peptides. Furthermore, various nanoparticle and different effective combination nanomedicine strategies also suggest some exciting results. Thus, to improve nanomedicine approaches to overcome MDR, in this evolutionary review, we have focused on fundamentals of possible strategies as well as the latest accomplishments to reverse MDR.</p>\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020025052\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020025052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 12

摘要

多药耐药(MDR)仍然是确保癌症患者有效化疗的主要障碍。一些因素可能与癌细胞的耐药有关,如p -糖蛋白(P-gp)的过度表达、癌症干细胞(CSCs)、凋亡缺陷、DNA修复途径的突变和改变、血管生成、自噬和代谢酶的调节。到目前为止,ABC转运体的药物外排一直是化疗相关耐药的一个明确且成熟的机制。为了探索ABC转运体相关耐药的机制,从药物结合位点的鉴定到其结构的阐明,已经进行了许多重要的研究。由于我们与耐药的持续斗争,已经采用了几种策略来对抗耐多药,包括P-gp调节剂、sirna、抗体和肽。此外,各种纳米颗粒和不同有效的纳米药物组合策略也显示出一些令人兴奋的结果。因此,为了改进纳米医学方法来克服耐多药耐药性,在这篇进化综述中,我们关注了可能策略的基本原理以及逆转耐多药耐药性的最新成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insight on Multidrug Resistance and Nanomedicine Approaches to Overcome MDR.

Multidrug resistance (MDR) remains a major obstacle to ensure effective chemotherapy in cancer patients. Several factors could be associated with cancer cells' drug resistance such as overexpression of P-glycoprotein (P-gp), cancer stem cells (CSCs), defect in apoptosis, mutation and alteration in DNA repair pathways, angiogenesis, autophagy, and modulation in metabolic enzymes. Until now, drug efflux by ABC transporters has been a univocal and well-established mechanism of chemotherapeutic associated drug resistance. To explore the mechanics involved in ABC transporter associated drug resistance, many crucial studies have been conducted from identification of drug binding sites to elucidation of their structure. Due to our continuous battle with drug resistance, several strategies have been employed to combat MDR, including P-gp modulators, siRNAs, antibodies, as well as peptides. Furthermore, various nanoparticle and different effective combination nanomedicine strategies also suggest some exciting results. Thus, to improve nanomedicine approaches to overcome MDR, in this evolutionary review, we have focused on fundamentals of possible strategies as well as the latest accomplishments to reverse MDR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
期刊最新文献
Current Review on Nanophytomedicines in the Treatment of Oral Cancer: Recent Trends and Treatment Prospects. Recent Updates on Phytopharmaceuticals-Based Novel Phytosomal Systems and Their Clinical Trial Status: A Translational Perspective. Enhancing Microemulsion based Therapeutic Drug Delivery: Exploring Surfactants, Co-surfactants, and Quality by Design Strategies within Pseudo-ternary Phase Diagrams NOVEL DRUG DELIVERY TOOLS FOR BETTER PERMEATION AND SKIN CANCER TREATMENT Nanobiocatalysts and Nanozymes: Enzyme-Inspired Nanomaterials for Industrial and Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1