基于itraq的moniliforme Fusarium verticillioides对Phloridzin诱导剂响应的定量蛋白质组学分析。

IF 2.1 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Proteome Science Pub Date : 2021-01-14 DOI:10.1186/s12953-021-00170-2
Rong Zhang, Weitao Jiang, Xin Liu, Yanan Duan, Li Xiang, Yanfang Wang, Yuanmao Jiang, Xiang Shen, Xuesen Chen, Chengmiao Yin, Zhiquan Mao
{"title":"基于itraq的moniliforme Fusarium verticillioides对Phloridzin诱导剂响应的定量蛋白质组学分析。","authors":"Rong Zhang,&nbsp;Weitao Jiang,&nbsp;Xin Liu,&nbsp;Yanan Duan,&nbsp;Li Xiang,&nbsp;Yanfang Wang,&nbsp;Yuanmao Jiang,&nbsp;Xiang Shen,&nbsp;Xuesen Chen,&nbsp;Chengmiao Yin,&nbsp;Zhiquan Mao","doi":"10.1186/s12953-021-00170-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified.</p><p><strong>Methods: </strong>In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis.</p><p><strong>Results: </strong>A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways.</p><p><strong>Conclusions: </strong>This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"19 1","pages":"2"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12953-021-00170-2","citationCount":"4","resultStr":"{\"title\":\"ITRAQ-based quantitative proteomic analysis of Fusarium moniliforme (Fusarium verticillioides) in response to Phloridzin inducers.\",\"authors\":\"Rong Zhang,&nbsp;Weitao Jiang,&nbsp;Xin Liu,&nbsp;Yanan Duan,&nbsp;Li Xiang,&nbsp;Yanfang Wang,&nbsp;Yuanmao Jiang,&nbsp;Xiang Shen,&nbsp;Xuesen Chen,&nbsp;Chengmiao Yin,&nbsp;Zhiquan Mao\",\"doi\":\"10.1186/s12953-021-00170-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified.</p><p><strong>Methods: </strong>In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis.</p><p><strong>Results: </strong>A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways.</p><p><strong>Conclusions: </strong>This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.</p>\",\"PeriodicalId\":20857,\"journal\":{\"name\":\"Proteome Science\",\"volume\":\"19 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12953-021-00170-2\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteome Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12953-021-00170-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-021-00170-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 4

摘要

背景:苹果再植病(ARD)在世界上所有主要水果种植区都有报道,通常由生物因素(病原体真菌)和非生物因素(酚类化合物)引起。为了阐明在根霉素作用下,镰孢镰刀菌的蛋白质组学差异,探讨镰孢镰刀菌作为ARD病原菌的潜在机制,进一步阐明镰孢镰刀菌在ARD中的作用。方法:采用定量蛋白质组学方法iTRAQ分析技术,分析苯丙嗪处理前后念珠菌的蛋白质组学差异。通过qRT-PCR分析验证差异表达蛋白。结果:共检出4535个蛋白,其中293个蛋白的检出率超过1.2倍(p)。结论:本研究首次采用iTRAQ标记和LC-MS/MS技术进行定量蛋白质组学研究,鉴定了根霉素条件下moniliforme中差异表达蛋白。结果证实,念珠状假单胞菌具有独特的蛋白质结构,表明了该物种对根瘤素环境的适应机制。该结果加深了我们对单胞菌对根霉素诱导剂响应的蛋白质组的认识,为进一步探索提高单胞菌作为生物防治剂防治ARD的效率提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ITRAQ-based quantitative proteomic analysis of Fusarium moniliforme (Fusarium verticillioides) in response to Phloridzin inducers.

Background: Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified.

Methods: In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis.

Results: A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways.

Conclusions: This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteome Science
Proteome Science 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
4.5 months
期刊介绍: Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context. Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics. In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.
期刊最新文献
MiR-18a-LncRNA NONRATG-022419 pairs targeted PRG-1 regulates diabetic induced cognitive impairment by regulating NGF\BDNF-Trkb signaling pathway. Metabolism-related proteins as biomarkers for predicting prognosis in polycystic ovary syndrome. LC-MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages. Identification of mRNA biomarkers in extremely early hypertensive intracerebral hemorrhage (HICH). Multi-targeted olink proteomics analyses of cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1