抗HER2抗体癌症的致敏性

Q4 Biochemistry, Genetics and Molecular Biology Critical Reviews in Oncogenesis Pub Date : 2020-01-01 DOI:10.1615/CritRevOncog.2020036080
Sagun Parakh, Hui K Gan, Andrew M Scott
{"title":"抗HER2抗体癌症的致敏性","authors":"Sagun Parakh,&nbsp;Hui K Gan,&nbsp;Andrew M Scott","doi":"10.1615/CritRevOncog.2020036080","DOIUrl":null,"url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (HER2) oncogene addiction has led to the development of anti-HER2 therapies which have revolutionized the management of patients with HER2-positive cancers, with trastuzumab being the cornerstone of treatment of HER2-positive breast cancer. Despite the success of these biologics in breast cancer patients, not all patients with HER2-positive tumors respond to treatment, and many eventually develop resistance to therapy. Developing therapies that that circumvent current resistance mechanisms and improve patient outcomes further remains an area of unmet clinical need. Based on insights gained from established anti-HER2 therapies and our understanding of known resistance mechanisms a number of novel anti-HER2 treatments are being developed. These include novel HER2 antibody-drug conjugates that have shown activity in HER2 high and low tumors, novel HER2 antibodies, T cell bispecific antibodies, and HER2 antibodies in combination with phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors, immunotherapy and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. In this article, we review resistance mechanisms to approved HER2 antibodies and provide an overview of emerging therapeutic agents.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitization of Cancers Resistant to HER2 Antibodies.\",\"authors\":\"Sagun Parakh,&nbsp;Hui K Gan,&nbsp;Andrew M Scott\",\"doi\":\"10.1615/CritRevOncog.2020036080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human epidermal growth factor receptor 2 (HER2) oncogene addiction has led to the development of anti-HER2 therapies which have revolutionized the management of patients with HER2-positive cancers, with trastuzumab being the cornerstone of treatment of HER2-positive breast cancer. Despite the success of these biologics in breast cancer patients, not all patients with HER2-positive tumors respond to treatment, and many eventually develop resistance to therapy. Developing therapies that that circumvent current resistance mechanisms and improve patient outcomes further remains an area of unmet clinical need. Based on insights gained from established anti-HER2 therapies and our understanding of known resistance mechanisms a number of novel anti-HER2 treatments are being developed. These include novel HER2 antibody-drug conjugates that have shown activity in HER2 high and low tumors, novel HER2 antibodies, T cell bispecific antibodies, and HER2 antibodies in combination with phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors, immunotherapy and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. In this article, we review resistance mechanisms to approved HER2 antibodies and provide an overview of emerging therapeutic agents.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2020036080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2020036080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

人类表皮生长因子受体2 (HER2)癌基因成瘾导致了抗HER2疗法的发展,这些疗法彻底改变了HER2阳性癌症患者的管理,曲妥珠单抗是HER2阳性乳腺癌治疗的基石。尽管这些生物制剂在乳腺癌患者中取得了成功,但并非所有her2阳性肿瘤患者对治疗都有反应,许多患者最终对治疗产生了耐药性。开发绕过当前耐药机制并进一步改善患者预后的治疗方法仍然是一个未满足临床需求的领域。基于从已建立的抗her2疗法中获得的见解和我们对已知耐药机制的理解,许多新的抗her2疗法正在开发中。这些包括在HER2高和低肿瘤中显示活性的新型HER2抗体-药物偶联物,新型HER2抗体,T细胞双特异性抗体,以及HER2抗体与磷脂酰肌醇3-激酶(PI3K)/哺乳动物雷帕霉素靶点(mTOR)抑制剂,免疫疗法和细胞周期蛋白依赖性激酶4/6 (CDK4/6)抑制剂联合使用。在本文中,我们回顾了已批准的HER2抗体的耐药机制,并概述了新兴治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitization of Cancers Resistant to HER2 Antibodies.

Human epidermal growth factor receptor 2 (HER2) oncogene addiction has led to the development of anti-HER2 therapies which have revolutionized the management of patients with HER2-positive cancers, with trastuzumab being the cornerstone of treatment of HER2-positive breast cancer. Despite the success of these biologics in breast cancer patients, not all patients with HER2-positive tumors respond to treatment, and many eventually develop resistance to therapy. Developing therapies that that circumvent current resistance mechanisms and improve patient outcomes further remains an area of unmet clinical need. Based on insights gained from established anti-HER2 therapies and our understanding of known resistance mechanisms a number of novel anti-HER2 treatments are being developed. These include novel HER2 antibody-drug conjugates that have shown activity in HER2 high and low tumors, novel HER2 antibodies, T cell bispecific antibodies, and HER2 antibodies in combination with phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors, immunotherapy and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. In this article, we review resistance mechanisms to approved HER2 antibodies and provide an overview of emerging therapeutic agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
期刊最新文献
Preface: Artificial Intelligence and the Revolution of Oncological Imaging. Radiomics and Artificial Intelligence in Renal Lesion Assessment. Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review. Disparities in Electronic Cigarette Use: A Narrative Review. Preface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1