{"title":"基于目标空间分解的动态多目标进化优化自适应响应策略","authors":"Ruochen Liu;Jianxia Li;Yaochu Jin;Licheng Jiao","doi":"10.1162/evco_a_00289","DOIUrl":null,"url":null,"abstract":"Dynamic multiobjective optimization deals with simultaneous optimization of multiple conflicting objectives that change over time. Several response strategies for dynamic optimization have been proposed, which do not work well for all types of environmental changes. In this article, we propose a new dynamic multiobjective evolutionary algorithm based on objective space decomposition, in which the maxi-min fitness function is adopted for selection and a self-adaptive response strategy integrating a number of different response strategies is designed to handle unknown environmental changes. The self-adaptive response strategy can adaptively select one of the strategies according to their contributions to the tracking performance in the previous environments. Experimental results indicate that the proposed algorithm is competitive and promising for solving different DMOPs in the presence of unknown environmental changes. Meanwhile, the proposed algorithm is applied to solve the parameter tuning problem of a proportional integral derivative (PID) controller of a dynamic system, obtaining better control effect.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"29 4","pages":"491-519"},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Self-Adaptive Response Strategy for Dynamic Multiobjective Evolutionary Optimization Based on Objective Space Decomposition\",\"authors\":\"Ruochen Liu;Jianxia Li;Yaochu Jin;Licheng Jiao\",\"doi\":\"10.1162/evco_a_00289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic multiobjective optimization deals with simultaneous optimization of multiple conflicting objectives that change over time. Several response strategies for dynamic optimization have been proposed, which do not work well for all types of environmental changes. In this article, we propose a new dynamic multiobjective evolutionary algorithm based on objective space decomposition, in which the maxi-min fitness function is adopted for selection and a self-adaptive response strategy integrating a number of different response strategies is designed to handle unknown environmental changes. The self-adaptive response strategy can adaptively select one of the strategies according to their contributions to the tracking performance in the previous environments. Experimental results indicate that the proposed algorithm is competitive and promising for solving different DMOPs in the presence of unknown environmental changes. Meanwhile, the proposed algorithm is applied to solve the parameter tuning problem of a proportional integral derivative (PID) controller of a dynamic system, obtaining better control effect.\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"29 4\",\"pages\":\"491-519\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9655644/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9655644/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Self-Adaptive Response Strategy for Dynamic Multiobjective Evolutionary Optimization Based on Objective Space Decomposition
Dynamic multiobjective optimization deals with simultaneous optimization of multiple conflicting objectives that change over time. Several response strategies for dynamic optimization have been proposed, which do not work well for all types of environmental changes. In this article, we propose a new dynamic multiobjective evolutionary algorithm based on objective space decomposition, in which the maxi-min fitness function is adopted for selection and a self-adaptive response strategy integrating a number of different response strategies is designed to handle unknown environmental changes. The self-adaptive response strategy can adaptively select one of the strategies according to their contributions to the tracking performance in the previous environments. Experimental results indicate that the proposed algorithm is competitive and promising for solving different DMOPs in the presence of unknown environmental changes. Meanwhile, the proposed algorithm is applied to solve the parameter tuning problem of a proportional integral derivative (PID) controller of a dynamic system, obtaining better control effect.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.