{"title":"最大化漂移不是解决OneMax的最佳方案","authors":"Nathan Buskulic;Carola Doerr","doi":"10.1162/evco_a_00290","DOIUrl":null,"url":null,"abstract":"It seems very intuitive that for the maximization of the OneMax problem Om(x):=∑i=1nxi the best that an elitist unary unbiased search algorithm can do is to store a best so far solution, and to modify it with the operator that yields the best possible expected progress in function value. This assumption has been implicitly used in several empirical works. In Doerr et al. (2020), it was formally proven that this approach is indeed almost optimal. In this work, we prove that drift maximization is not optimal. More precisely, we show that for most fitness levels between n/2 and 2n/3 the optimal mutation strengths are larger than the drift-maximizing ones. This implies that the optimal RLS is more risk-affine than the variant maximizing the stepwise expected progress. We show similar results for the mutation rates of the classic (1+1) Evolutionary Algorithm (EA) and its resampling variant, the (1+1) EA>0. As a result of independent interest we show that the optimal mutation strengths, unlike the drift-maximizing ones, can be even.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"29 4","pages":"521-541"},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Maximizing Drift Is Not Optimal for Solving OneMax\",\"authors\":\"Nathan Buskulic;Carola Doerr\",\"doi\":\"10.1162/evco_a_00290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It seems very intuitive that for the maximization of the OneMax problem Om(x):=∑i=1nxi the best that an elitist unary unbiased search algorithm can do is to store a best so far solution, and to modify it with the operator that yields the best possible expected progress in function value. This assumption has been implicitly used in several empirical works. In Doerr et al. (2020), it was formally proven that this approach is indeed almost optimal. In this work, we prove that drift maximization is not optimal. More precisely, we show that for most fitness levels between n/2 and 2n/3 the optimal mutation strengths are larger than the drift-maximizing ones. This implies that the optimal RLS is more risk-affine than the variant maximizing the stepwise expected progress. We show similar results for the mutation rates of the classic (1+1) Evolutionary Algorithm (EA) and its resampling variant, the (1+1) EA>0. As a result of independent interest we show that the optimal mutation strengths, unlike the drift-maximizing ones, can be even.\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"29 4\",\"pages\":\"521-541\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9655645/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9655645/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Maximizing Drift Is Not Optimal for Solving OneMax
It seems very intuitive that for the maximization of the OneMax problem Om(x):=∑i=1nxi the best that an elitist unary unbiased search algorithm can do is to store a best so far solution, and to modify it with the operator that yields the best possible expected progress in function value. This assumption has been implicitly used in several empirical works. In Doerr et al. (2020), it was formally proven that this approach is indeed almost optimal. In this work, we prove that drift maximization is not optimal. More precisely, we show that for most fitness levels between n/2 and 2n/3 the optimal mutation strengths are larger than the drift-maximizing ones. This implies that the optimal RLS is more risk-affine than the variant maximizing the stepwise expected progress. We show similar results for the mutation rates of the classic (1+1) Evolutionary Algorithm (EA) and its resampling variant, the (1+1) EA>0. As a result of independent interest we show that the optimal mutation strengths, unlike the drift-maximizing ones, can be even.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.