脑机接口的多上下文字符预测模型。

Shiran Dudy, Steven Bedrick, Shaobin Xu, David A Smith
{"title":"脑机接口的多上下文字符预测模型。","authors":"Shiran Dudy,&nbsp;Steven Bedrick,&nbsp;Shaobin Xu,&nbsp;David A Smith","doi":"10.18653/v1/w18-1210","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces and other augmentative and alternative communication devices introduce language-modeing challenges distinct from other character-entry methods. In particular, the acquired signal of the EEG (electroencephalogram) signal is noisier, which, in turn, makes the user intent harder to decipher. In order to adapt to this condition, we propose to maintain ambiguous history for every time step, and to employ, apart from the character language model, word information to produce a more robust prediction system. We present preliminary results that compare this proposed Online-Context Language Model (OCLM) to current algorithms that are used in this type of setting. Evaluations on both perplexity and predictive accuracy demonstrate promising results when dealing with ambiguous histories in order to provide to the front end a distribution of the next character the user might type.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2018 ","pages":"72-77"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087439/pdf/nihms-1001613.pdf","citationCount":"3","resultStr":"{\"title\":\"A Multi-Context Character Prediction Model for a Brain-Computer Interface.\",\"authors\":\"Shiran Dudy,&nbsp;Steven Bedrick,&nbsp;Shaobin Xu,&nbsp;David A Smith\",\"doi\":\"10.18653/v1/w18-1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-computer interfaces and other augmentative and alternative communication devices introduce language-modeing challenges distinct from other character-entry methods. In particular, the acquired signal of the EEG (electroencephalogram) signal is noisier, which, in turn, makes the user intent harder to decipher. In order to adapt to this condition, we propose to maintain ambiguous history for every time step, and to employ, apart from the character language model, word information to produce a more robust prediction system. We present preliminary results that compare this proposed Online-Context Language Model (OCLM) to current algorithms that are used in this type of setting. Evaluations on both perplexity and predictive accuracy demonstrate promising results when dealing with ambiguous histories in order to provide to the front end a distribution of the next character the user might type.</p>\",\"PeriodicalId\":74542,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"volume\":\"2018 \",\"pages\":\"72-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087439/pdf/nihms-1001613.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/w18-1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/w18-1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑机接口和其他增强和替代通信设备引入了不同于其他字符输入方法的语言建模挑战。特别是,采集到的EEG(脑电图)信号噪声更大,这反过来又使用户意图更难被破译。为了适应这种情况,我们建议在每个时间步保持模糊历史,并且除了使用字符语言模型外,还使用单词信息来产生更稳健的预测系统。我们提出了初步的结果,将这个提议的在线上下文语言模型(OCLM)与当前在这种类型的设置中使用的算法进行比较。在处理模棱两可的历史时,为了向前端提供用户可能键入的下一个字符的分布,对困惑度和预测准确性的评估显示了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Context Character Prediction Model for a Brain-Computer Interface.

Brain-computer interfaces and other augmentative and alternative communication devices introduce language-modeing challenges distinct from other character-entry methods. In particular, the acquired signal of the EEG (electroencephalogram) signal is noisier, which, in turn, makes the user intent harder to decipher. In order to adapt to this condition, we propose to maintain ambiguous history for every time step, and to employ, apart from the character language model, word information to produce a more robust prediction system. We present preliminary results that compare this proposed Online-Context Language Model (OCLM) to current algorithms that are used in this type of setting. Evaluations on both perplexity and predictive accuracy demonstrate promising results when dealing with ambiguous histories in order to provide to the front end a distribution of the next character the user might type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1