Aysegul Gunduz, Enrico Opri, Ro'ee Gilron, Vaclav Kremen, Gregory Worrell, Phil Starr, Kent Leyde, Timothy Denison
{"title":"为 \"智能 \"生物电子系统增添智慧:包括实例在内的生理控制设计框架。","authors":"Aysegul Gunduz, Enrico Opri, Ro'ee Gilron, Vaclav Kremen, Gregory Worrell, Phil Starr, Kent Leyde, Timothy Denison","doi":"10.2217/bem-2019-0008","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain-machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.</p>","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":"2 1","pages":"29-41"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/10/EMS107535.PMC7610621.pdf","citationCount":"0","resultStr":"{\"title\":\"Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples.\",\"authors\":\"Aysegul Gunduz, Enrico Opri, Ro'ee Gilron, Vaclav Kremen, Gregory Worrell, Phil Starr, Kent Leyde, Timothy Denison\",\"doi\":\"10.2217/bem-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain-machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.</p>\",\"PeriodicalId\":72364,\"journal\":{\"name\":\"Bioelectronics in medicine\",\"volume\":\"2 1\",\"pages\":\"29-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/10/EMS107535.PMC7610621.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/bem-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/bem-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples.
This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain-machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.