蛋白质折叠和/或质量控制缺陷导致蛋白质在内质网聚集。

Juthakorn Poothong, Insook Jang, Randal J Kaufman
{"title":"蛋白质折叠和/或质量控制缺陷导致蛋白质在内质网聚集。","authors":"Juthakorn Poothong,&nbsp;Insook Jang,&nbsp;Randal J Kaufman","doi":"10.1007/978-3-030-67696-4_6","DOIUrl":null,"url":null,"abstract":"<p><p>Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"115-143"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802734/pdf/nihms-1760500.pdf","citationCount":"3","resultStr":"{\"title\":\"Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum.\",\"authors\":\"Juthakorn Poothong,&nbsp;Insook Jang,&nbsp;Randal J Kaufman\",\"doi\":\"10.1007/978-3-030-67696-4_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.</p>\",\"PeriodicalId\":20880,\"journal\":{\"name\":\"Progress in molecular and subcellular biology\",\"volume\":\"59 \",\"pages\":\"115-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802734/pdf/nihms-1760500.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular and subcellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-67696-4_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-67696-4_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

摘要

蛋白质聚集现在是许多人类疾病的共同标志,其中大多数涉及细胞质聚集,包括阿尔茨海默病和帕金森病中的a β (AD)和突触核蛋白(PD)。然而,同样明显的是,蛋白质聚集也可以发生在内质网(ER)的管腔中,由于蛋白质功能丧失或对宿主细胞的有害影响而导致特定疾病,前者以隐性方式遗传,后者以显性方式遗传。然而,内质网中蛋白质聚集、分解和降解的机制尚不清楚。在这里,我们提供了一个因素的概述,导致蛋白质聚集在内质网和内质网如何处理聚集的蛋白质。内质网中的蛋白质聚集可能是由于蛋白质的内在特性(内质网中的疏水残基)、氧化应激或营养物质消耗造成的。内质网具有质量控制机制[伴侣功能,内质网相关蛋白降解(ERAD)和自噬],以确保只有正确折叠的蛋白质才能离开内质网并进入顺式高尔基室。内质网中蛋白质折叠的扰动激活未折叠蛋白反应(UPR),从而提高内质网蛋白的折叠能力和效率,并降解错误折叠的蛋白质。错误折叠的蛋白质在内质网中积累到超过内质网伴侣折叠能力的水平是加剧蛋白质聚集的一个主要因素。内质网中阻止蛋白质聚集的最重要的内质网驻留蛋白是热休克蛋白70 (HSP70)同源物BiP/GRP78,它是一种肽依赖的ATP酶,可以结合未折叠/错误折叠的蛋白质,并在ATP结合时释放它们。由于外源因素也可以减少内质网中蛋白质的错误折叠和聚集,如化学伴侣和抗氧化剂,这些治疗方法对内质网蛋白质聚集相关疾病具有潜在的治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum.

Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1