Julia C V Reuwsaat, Tamara L Doering, Livia Kmetzsch
{"title":"过量是件好事:毒力因子的过量产生会损害隐球菌的致病性。","authors":"Julia C V Reuwsaat, Tamara L Doering, Livia Kmetzsch","doi":"10.15698/mic2021.05.750","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of virulence factor production and deployment is crucial for the establishment of microbial infection and subsequent pathogenesis. If these processes are not properly coordinated, the infecting pathogen is less likely to both survive the immune response and cause damage to the host. One key virulence factor of the opportunistic fungal pathogen <i>Cryptococcus neoformans</i>, which kills almost 200,000 people each year worldwide, is a polysaccharide capsule that surrounds the cell wall; this structure helps the fungal cells resist engulfment and elimination by host phagocytes. Another important virulence trait is the development of a giant (Titan) cell morphotype that increases fungal resistance to phagocytosis, oxidative stress, and antifungal treatment. We recently identified the transcription factor Pdr802 as essential for <i>C. neoformans</i> adaptation to and survival under host conditions both <i>in vitro</i> and <i>in vivo</i> (Reuwsaat <i>et al.</i>, mBio, doi: 10.1128/mBio.03457-20). Cryptococci lacking Pdr802 display enlarged capsules and enhanced Titan cell production, along with dramatically reduced virulence in a mouse model of infection. These results demonstrate that more is not necessarily better when it comes to virulence factors. Instead, precise regulation of these traits, to avoid both under- and overexpression, is critical for the success of this pathogen as it faces the challenges imposed by the host environment.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080896/pdf/","citationCount":"0","resultStr":"{\"title\":\"Too much of a good thing: Overproduction of virulence factors impairs cryptococcal pathogenicity.\",\"authors\":\"Julia C V Reuwsaat, Tamara L Doering, Livia Kmetzsch\",\"doi\":\"10.15698/mic2021.05.750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of virulence factor production and deployment is crucial for the establishment of microbial infection and subsequent pathogenesis. If these processes are not properly coordinated, the infecting pathogen is less likely to both survive the immune response and cause damage to the host. One key virulence factor of the opportunistic fungal pathogen <i>Cryptococcus neoformans</i>, which kills almost 200,000 people each year worldwide, is a polysaccharide capsule that surrounds the cell wall; this structure helps the fungal cells resist engulfment and elimination by host phagocytes. Another important virulence trait is the development of a giant (Titan) cell morphotype that increases fungal resistance to phagocytosis, oxidative stress, and antifungal treatment. We recently identified the transcription factor Pdr802 as essential for <i>C. neoformans</i> adaptation to and survival under host conditions both <i>in vitro</i> and <i>in vivo</i> (Reuwsaat <i>et al.</i>, mBio, doi: 10.1128/mBio.03457-20). Cryptococci lacking Pdr802 display enlarged capsules and enhanced Titan cell production, along with dramatically reduced virulence in a mouse model of infection. These results demonstrate that more is not necessarily better when it comes to virulence factors. Instead, precise regulation of these traits, to avoid both under- and overexpression, is critical for the success of this pathogen as it faces the challenges imposed by the host environment.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080896/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2021.05.750\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2021.05.750","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
毒力因子产生和部署的调控对于微生物感染的建立和随后的发病机制至关重要。如果这些过程没有得到适当的协调,感染的病原体就不太可能在免疫反应中存活下来,并对宿主造成损害。机会性真菌病原体新隐球菌(Cryptococcus neoformans)的一个关键毒力因子是包围细胞壁的多糖胶囊;这种结构有助于真菌细胞抵抗宿主吞噬细胞的吞噬和清除。另一个重要的毒力特征是巨大(泰坦)细胞形态的发展,增加了真菌对吞噬、氧化应激和抗真菌治疗的抵抗力。我们最近发现转录因子Pdr802在体外和体内都是新生C.在宿主条件下适应和生存所必需的(Reuwsaat et al., mBio, doi: 10.1128/mBio.03457-20)。在小鼠感染模型中,缺乏Pdr802的隐球菌显示出增大的荚膜和增强的泰坦细胞生产,同时显著降低了毒力。这些结果表明,当涉及到毒力因素时,不一定越多越好。相反,精确调节这些性状,以避免过表达和过表达,对于这种病原体在面对宿主环境的挑战时取得成功至关重要。
Too much of a good thing: Overproduction of virulence factors impairs cryptococcal pathogenicity.
The regulation of virulence factor production and deployment is crucial for the establishment of microbial infection and subsequent pathogenesis. If these processes are not properly coordinated, the infecting pathogen is less likely to both survive the immune response and cause damage to the host. One key virulence factor of the opportunistic fungal pathogen Cryptococcus neoformans, which kills almost 200,000 people each year worldwide, is a polysaccharide capsule that surrounds the cell wall; this structure helps the fungal cells resist engulfment and elimination by host phagocytes. Another important virulence trait is the development of a giant (Titan) cell morphotype that increases fungal resistance to phagocytosis, oxidative stress, and antifungal treatment. We recently identified the transcription factor Pdr802 as essential for C. neoformans adaptation to and survival under host conditions both in vitro and in vivo (Reuwsaat et al., mBio, doi: 10.1128/mBio.03457-20). Cryptococci lacking Pdr802 display enlarged capsules and enhanced Titan cell production, along with dramatically reduced virulence in a mouse model of infection. These results demonstrate that more is not necessarily better when it comes to virulence factors. Instead, precise regulation of these traits, to avoid both under- and overexpression, is critical for the success of this pathogen as it faces the challenges imposed by the host environment.