Zhihui Fu, Susu Zhang, Ya-Hui Su, Ningzhong Shi, Jian Tao
{"title":"基于数据增强方案的多维四参数物流项目响应模型吉布斯采样器","authors":"Zhihui Fu, Susu Zhang, Ya-Hui Su, Ningzhong Shi, Jian Tao","doi":"10.1111/bmsp.12234","DOIUrl":null,"url":null,"abstract":"<p>The four-parameter logistic (4PL) item response model, which includes an upper asymptote for the correct response probability, has drawn increasing interest due to its suitability for many practical scenarios. This paper proposes a new Gibbs sampling algorithm for estimation of the multidimensional 4PL model based on an efficient data augmentation scheme (DAGS). With the introduction of three continuous latent variables, the full conditional distributions are tractable, allowing easy implementation of a Gibbs sampler. Simulation studies are conducted to evaluate the proposed method and several popular alternatives. An empirical data set was analysed using the 4PL model to show its improved performance over the three-parameter and two-parameter logistic models. The proposed estimation scheme is easily accessible to practitioners through the open-source <i>IRTlogit</i> package.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12234","citationCount":"4","resultStr":"{\"title\":\"A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme\",\"authors\":\"Zhihui Fu, Susu Zhang, Ya-Hui Su, Ningzhong Shi, Jian Tao\",\"doi\":\"10.1111/bmsp.12234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The four-parameter logistic (4PL) item response model, which includes an upper asymptote for the correct response probability, has drawn increasing interest due to its suitability for many practical scenarios. This paper proposes a new Gibbs sampling algorithm for estimation of the multidimensional 4PL model based on an efficient data augmentation scheme (DAGS). With the introduction of three continuous latent variables, the full conditional distributions are tractable, allowing easy implementation of a Gibbs sampler. Simulation studies are conducted to evaluate the proposed method and several popular alternatives. An empirical data set was analysed using the 4PL model to show its improved performance over the three-parameter and two-parameter logistic models. The proposed estimation scheme is easily accessible to practitioners through the open-source <i>IRTlogit</i> package.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/bmsp.12234\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12234\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12234","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme
The four-parameter logistic (4PL) item response model, which includes an upper asymptote for the correct response probability, has drawn increasing interest due to its suitability for many practical scenarios. This paper proposes a new Gibbs sampling algorithm for estimation of the multidimensional 4PL model based on an efficient data augmentation scheme (DAGS). With the introduction of three continuous latent variables, the full conditional distributions are tractable, allowing easy implementation of a Gibbs sampler. Simulation studies are conducted to evaluate the proposed method and several popular alternatives. An empirical data set was analysed using the 4PL model to show its improved performance over the three-parameter and two-parameter logistic models. The proposed estimation scheme is easily accessible to practitioners through the open-source IRTlogit package.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.