{"title":"基于最小工程的药物不良事件信息提取。","authors":"Timothy Miller, Alon Geva, Dmitriy Dligach","doi":"10.18653/v1/w19-1903","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we describe an evaluation of the potential of classical information extraction methods to extract drug-related attributes, including adverse drug events, and compare to more recently developed neural methods. We use the 2018 N2C2 shared task data as our gold standard data set for training. We train support vector machine classifiers to detect drug and drug attribute spans, and pair these detected entities as training instances for an SVM relation classifier, with both systems using standard features. We compare to baseline neural methods that use standard contextualized embedding representations for entity and relation extraction. The SVM-based system and a neural system obtain comparable results, with the SVM system doing better on concepts and the neural system performing better on relation extraction tasks. The neural system obtains surprisingly strong results compared to the system based on years of research in developing features for information extraction.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2019 ","pages":"22-27"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140592/pdf/nihms-1035507.pdf","citationCount":"10","resultStr":"{\"title\":\"Extracting Adverse Drug Event Information with Minimal Engineering.\",\"authors\":\"Timothy Miller, Alon Geva, Dmitriy Dligach\",\"doi\":\"10.18653/v1/w19-1903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we describe an evaluation of the potential of classical information extraction methods to extract drug-related attributes, including adverse drug events, and compare to more recently developed neural methods. We use the 2018 N2C2 shared task data as our gold standard data set for training. We train support vector machine classifiers to detect drug and drug attribute spans, and pair these detected entities as training instances for an SVM relation classifier, with both systems using standard features. We compare to baseline neural methods that use standard contextualized embedding representations for entity and relation extraction. The SVM-based system and a neural system obtain comparable results, with the SVM system doing better on concepts and the neural system performing better on relation extraction tasks. The neural system obtains surprisingly strong results compared to the system based on years of research in developing features for information extraction.</p>\",\"PeriodicalId\":74542,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"volume\":\"2019 \",\"pages\":\"22-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140592/pdf/nihms-1035507.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/w19-1903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/w19-1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting Adverse Drug Event Information with Minimal Engineering.
In this paper we describe an evaluation of the potential of classical information extraction methods to extract drug-related attributes, including adverse drug events, and compare to more recently developed neural methods. We use the 2018 N2C2 shared task data as our gold standard data set for training. We train support vector machine classifiers to detect drug and drug attribute spans, and pair these detected entities as training instances for an SVM relation classifier, with both systems using standard features. We compare to baseline neural methods that use standard contextualized embedding representations for entity and relation extraction. The SVM-based system and a neural system obtain comparable results, with the SVM system doing better on concepts and the neural system performing better on relation extraction tasks. The neural system obtains surprisingly strong results compared to the system based on years of research in developing features for information extraction.