{"title":"一致最强贝叶斯检验的存在性及其在非中心卡方检验中的应用","authors":"Amir Nikooienejad, Valen E Johnson","doi":"10.1214/19-ba1194","DOIUrl":null,"url":null,"abstract":"<p><p>Uniformly most powerful Bayesian tests (UMPBT's) are an objective class of Bayesian hypothesis tests that can be considered the Bayesian counterpart of classical uniformly most powerful tests. Because the rejection regions of UMPBT's can be matched to the rejection regions of classical uniformly most powerful tests (UMPTs), UMPBT's provide a mechanism for calibrating Bayesian evidence thresholds, Bayes factors, classical significance levels and p-values. The purpose of this article is to expand the application of UMPBT's outside the class of exponential family models. Specifically, we introduce sufficient conditions for the existence of UMPBT's and propose a unified approach for their derivation. An important application of our methodology is the extension of UMPBT's to testing whether the non-centrality parameter of a chi-squared distribution is zero. The resulting tests have broad applicability, providing default alternative hypotheses to compute Bayes factors in, for example, Pearson's chi-squared test for goodness-of-fit, tests of independence in contingency tables, and likelihood ratio, score and Wald tests.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189570/pdf/nihms-1595140.pdf","citationCount":"2","resultStr":"{\"title\":\"On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-Central Chi-Squared Tests.\",\"authors\":\"Amir Nikooienejad, Valen E Johnson\",\"doi\":\"10.1214/19-ba1194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uniformly most powerful Bayesian tests (UMPBT's) are an objective class of Bayesian hypothesis tests that can be considered the Bayesian counterpart of classical uniformly most powerful tests. Because the rejection regions of UMPBT's can be matched to the rejection regions of classical uniformly most powerful tests (UMPTs), UMPBT's provide a mechanism for calibrating Bayesian evidence thresholds, Bayes factors, classical significance levels and p-values. The purpose of this article is to expand the application of UMPBT's outside the class of exponential family models. Specifically, we introduce sufficient conditions for the existence of UMPBT's and propose a unified approach for their derivation. An important application of our methodology is the extension of UMPBT's to testing whether the non-centrality parameter of a chi-squared distribution is zero. The resulting tests have broad applicability, providing default alternative hypotheses to compute Bayes factors in, for example, Pearson's chi-squared test for goodness-of-fit, tests of independence in contingency tables, and likelihood ratio, score and Wald tests.</p>\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189570/pdf/nihms-1595140.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-ba1194\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-ba1194","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-Central Chi-Squared Tests.
Uniformly most powerful Bayesian tests (UMPBT's) are an objective class of Bayesian hypothesis tests that can be considered the Bayesian counterpart of classical uniformly most powerful tests. Because the rejection regions of UMPBT's can be matched to the rejection regions of classical uniformly most powerful tests (UMPTs), UMPBT's provide a mechanism for calibrating Bayesian evidence thresholds, Bayes factors, classical significance levels and p-values. The purpose of this article is to expand the application of UMPBT's outside the class of exponential family models. Specifically, we introduce sufficient conditions for the existence of UMPBT's and propose a unified approach for their derivation. An important application of our methodology is the extension of UMPBT's to testing whether the non-centrality parameter of a chi-squared distribution is zero. The resulting tests have broad applicability, providing default alternative hypotheses to compute Bayes factors in, for example, Pearson's chi-squared test for goodness-of-fit, tests of independence in contingency tables, and likelihood ratio, score and Wald tests.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.