DNA聚合酶III蛋白,HolC,有助于解决复制/转录冲突。

IF 4.1 3区 生物学 Q2 CELL BIOLOGY Microbial Cell Pub Date : 2021-05-06 DOI:10.15698/mic2021.06.753
Susan T Lovett
{"title":"DNA聚合酶III蛋白,HolC,有助于解决复制/转录冲突。","authors":"Susan T Lovett","doi":"10.15698/mic2021.06.753","DOIUrl":null,"url":null,"abstract":"<p><p>In <i>Escherichia coli,</i> DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp and clamp loader complex. The <i>holC</i> gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability although mutants show growth impairment, genetic instability and sensitivity to DNA damaging agents. In this study we isolate spontaneous suppressor mutants in a <i>holC</i>Δ strain and identify these by whole genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for <i>holC</i> mutant strains, and of <i>sspA</i>, stringent starvation protein. Using a conditional <i>holC</i> plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on <i>holC</i> mutant phenotypes. Alleles of RpoA (α), RpoB (β) and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of <i>holC</i> mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of <i>holC</i> by <i>rpoA, rpoC</i> and <i>sspA</i>. An inversion of the highly expressed <i>rrnA</i> operon exacerbates the growth defects of <i>holC</i> mutants. We propose that transcription complexes block replication in <i>holC</i> mutants and Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144910/pdf/","citationCount":"2","resultStr":"{\"title\":\"DNA polymerase III protein, HolC, helps resolve replication/transcription conflicts.\",\"authors\":\"Susan T Lovett\",\"doi\":\"10.15698/mic2021.06.753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In <i>Escherichia coli,</i> DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp and clamp loader complex. The <i>holC</i> gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability although mutants show growth impairment, genetic instability and sensitivity to DNA damaging agents. In this study we isolate spontaneous suppressor mutants in a <i>holC</i>Δ strain and identify these by whole genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for <i>holC</i> mutant strains, and of <i>sspA</i>, stringent starvation protein. Using a conditional <i>holC</i> plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on <i>holC</i> mutant phenotypes. Alleles of RpoA (α), RpoB (β) and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of <i>holC</i> mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of <i>holC</i> by <i>rpoA, rpoC</i> and <i>sspA</i>. An inversion of the highly expressed <i>rrnA</i> operon exacerbates the growth defects of <i>holC</i> mutants. We propose that transcription complexes block replication in <i>holC</i> mutants and Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144910/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2021.06.753\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2021.06.753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在大肠杆菌中,DNA复制是由一组蛋白质催化的,即DNA聚合酶III全酶。该复合物包括聚合酶和校对亚基,加工钳和钳加载器复合物。holC基因编码核心钳夹装载复合物的辅助蛋白(称为χ),并且是holC酶中唯一与单链DNA结合蛋白SSB结合的蛋白质。虽然突变体表现出生长障碍、遗传不稳定性和对DNA损伤剂的敏感性,但HolC对生存能力不是必需的。在这项研究中,我们从holCΔ菌株中分离出自发抑制突变体,并通过全基因组测序对其进行鉴定。一些抑制因子是RNA聚合酶的等位基因,这表明holC突变株和sspA(严格饥饿蛋白)的转录存在问题。使用条件holC质粒,我们研究了影响转录延伸和终止的因素对holC突变表型的协同或抑制作用。RpoA (α)、RpoB (β)和RpoC (β′)RNA聚合酶全酶等位基因可部分抑制HolC的丢失。相反,转录因子DksA和NusA的突变增强了holC突变体的不活力。HolC突变体对双环霉素的敏感性增强,双环霉素是一种rho依赖性终止的特异性抑制剂。双环霉素也逆转了rpoA、rpoC和sspA对holC的抑制。高表达rrnA操纵子的倒置加剧了holC突变体的生长缺陷。我们认为转录复合物阻断了holC突变体的复制,rho依赖性转录终止和DksA功能对于维持生存能力和染色体完整性尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA polymerase III protein, HolC, helps resolve replication/transcription conflicts.

In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability although mutants show growth impairment, genetic instability and sensitivity to DNA damaging agents. In this study we isolate spontaneous suppressor mutants in a holCΔ strain and identify these by whole genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, and of sspA, stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (β) and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC and sspA. An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? Direct detection of stringent alarmones (pp)pGpp using malachite green.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1