细胞外基质基因表达特征作为细胞类型和细胞状态标识符

Q1 Medicine Matrix Biology Plus Pub Date : 2021-06-01 DOI:10.1016/j.mbplus.2021.100069
Fabio Sacher , Christian Feregrino , Patrick Tschopp , Collin Y. Ewald
{"title":"细胞外基质基因表达特征作为细胞类型和细胞状态标识符","authors":"Fabio Sacher ,&nbsp;Christian Feregrino ,&nbsp;Patrick Tschopp ,&nbsp;Collin Y. Ewald","doi":"10.1016/j.mbplus.2021.100069","DOIUrl":null,"url":null,"abstract":"<div><p>Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome – that is, all genes coding for structural proteins of the extracellular matrix – for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, <em>i.e.,</em> when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"10 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mbplus.2021.100069","citationCount":"10","resultStr":"{\"title\":\"Extracellular matrix gene expression signatures as cell type and cell state identifiers\",\"authors\":\"Fabio Sacher ,&nbsp;Christian Feregrino ,&nbsp;Patrick Tschopp ,&nbsp;Collin Y. Ewald\",\"doi\":\"10.1016/j.mbplus.2021.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome – that is, all genes coding for structural proteins of the extracellular matrix – for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, <em>i.e.,</em> when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.</p></div>\",\"PeriodicalId\":52317,\"journal\":{\"name\":\"Matrix Biology Plus\",\"volume\":\"10 \",\"pages\":\"Article 100069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mbplus.2021.100069\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590028521000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028521000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

摘要

基于细胞mRNA表达谱的转录组特征可用于对细胞类型和状态进行分类。然而,在这个过程中,不同功能组的基因表现得更好或更差,在很大程度上仍未被探索。在这里,我们测试了核心基质-即所有编码细胞外基质结构蛋白的基因-在胚胎单细胞rna测序(scRNA-seq)数据中描述不同细胞类型的能力。我们发现,尽管表达的核心基质基因只占整个细胞转录组的不到2%,但它们的RNA表达水平足以概括细胞类型特异性聚类的基本方面。值得注意的是,利用胚胎肢体的scRNA-seq数据,我们证明了核心基质基因表达优于相似大小的随机基因亚群,并且可以匹配甚至超过转录因子的预测能力。虽然转录因子信号通常在鸡和小鼠肢体发育的早期阶段能更好地预测细胞类型,即当细胞分化程度较低时,核心基质体信号的信息含量在分化程度较高的细胞中增加。此外,通过跨物种分析,我们发现这些细胞类型特异性特征在进化上是保守的。我们的研究结果表明,每种细胞类型都会产生自己独特的细胞外基质或基质型,随着胚胎组织的成熟,这种基质会逐渐变得更加精细和细胞类型特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracellular matrix gene expression signatures as cell type and cell state identifiers

Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome – that is, all genes coding for structural proteins of the extracellular matrix – for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, i.e., when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
期刊最新文献
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI) Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1