Khan Umaer, Francisco Aresta-Branco, Monica Chandra, Monique van Straaten, Johan Zeelen, Karine Lapouge, Brandon Waxman, C Erec Stebbins, James D Bangs
{"title":"布鲁氏锥虫动态、可变寡聚化和不同表面糖蛋白的转运。","authors":"Khan Umaer, Francisco Aresta-Branco, Monica Chandra, Monique van Straaten, Johan Zeelen, Karine Lapouge, Brandon Waxman, C Erec Stebbins, James D Bangs","doi":"10.1111/tra.12806","DOIUrl":null,"url":null,"abstract":"<p><p>African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 8","pages":"274-283"},"PeriodicalIF":3.6000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/tra.12806","citationCount":"4","resultStr":"{\"title\":\"Dynamic, variable oligomerization and the trafficking of variant surface glycoproteins of Trypanosoma brucei.\",\"authors\":\"Khan Umaer, Francisco Aresta-Branco, Monica Chandra, Monique van Straaten, Johan Zeelen, Karine Lapouge, Brandon Waxman, C Erec Stebbins, James D Bangs\",\"doi\":\"10.1111/tra.12806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":\"22 8\",\"pages\":\"274-283\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/tra.12806\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12806\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12806","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dynamic, variable oligomerization and the trafficking of variant surface glycoproteins of Trypanosoma brucei.
African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.