贝叶斯解释性加性IRT模型

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2021-06-05 DOI:10.1111/bmsp.12245
Patrick Mair, Kathrin Gruber
{"title":"贝叶斯解释性加性IRT模型","authors":"Patrick Mair,&nbsp;Kathrin Gruber","doi":"10.1111/bmsp.12245","DOIUrl":null,"url":null,"abstract":"<p>In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12245","citationCount":"2","resultStr":"{\"title\":\"Bayesian explanatory additive IRT models\",\"authors\":\"Patrick Mair,&nbsp;Kathrin Gruber\",\"doi\":\"10.1111/bmsp.12245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/bmsp.12245\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12245\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12245","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们将解释性混合IRT模型的框架扩展到一个更一般的类,称为解释性加性IRT模型。我们通过增加光滑函数的线性预测量来做到这一点。这一发展提供了许多新的建模选项,例如包含非线性协变量效应,各种时空依赖模式的规范,以及协变量之间的参数划分。我们使用集成嵌套拉普拉斯近似(INLA)来精确和计算高效地估计参数。讨论了超参数的无信息、弱信息和信息先验设置。为了研究INLA应用于所提出的解释性加性IRT模型类时的精度和计算效率,进行了运行时间实验和蒙特卡罗参数恢复模拟。利用现实数据集,探索了多种应用场景,并在可能的情况下将结果与经典的最大似然估计进行了比较。R代码包含在补充材料中,以允许读者完全复制论文中计算的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian explanatory additive IRT models

In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
Investigating heterogeneity in IRTree models for multiple response processes with score-based partitioning. A convexity-constrained parameterization of the random effects generalized partial credit model. Handling missing data in variational autoencoder based item response theory. Maximal point-polyserial correlation for non-normal random distributions. Perturbation graphs, invariant causal prediction and causal relations in psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1