{"title":"贝叶斯解释性加性IRT模型","authors":"Patrick Mair, Kathrin Gruber","doi":"10.1111/bmsp.12245","DOIUrl":null,"url":null,"abstract":"<p>In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12245","citationCount":"2","resultStr":"{\"title\":\"Bayesian explanatory additive IRT models\",\"authors\":\"Patrick Mair, Kathrin Gruber\",\"doi\":\"10.1111/bmsp.12245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/bmsp.12245\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12245\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12245","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.