Emily Morris, Kevin He, Yanming Li, Yi Li, Jian Kang
{"title":"SurvBoost:一个基于梯度提升的分层比例风险模型中高维变量选择的R包。","authors":"Emily Morris, Kevin He, Yanming Li, Yi Li, Jian Kang","doi":"10.32614/rj-2020-018","DOIUrl":null,"url":null,"abstract":"<p><p>High-dimensional variable selection in the proportional hazards (PH) model has many successful applications in different areas. In practice, data may involve confounding variables that do not satisfy the PH assumption, in which case the stratified proportional hazards (SPH) model can be adopted to control the confounding effects by stratification without directly modeling the confounding effects. However, there is a lack of computationally efficient statistical software for high-dimensional variable selection in the SPH model. In this work an R package, <b>SurvBoost</b>, is developed to implement the gradient boosting algorithm for fitting the SPH model with high-dimensional covariate variables. Simulation studies demonstrate that in many scenarios <b>SurvBoost</b> can achieve better selection accuracy and reduce computational time substantially compared to the existing R package that implements boosting algorithms without stratification. The proposed R package is also illustrated by an analysis of gene expression data with survival outcome in The Cancer Genome Atlas study. In addition, a detailed hands-on tutorial for <b>SurvBoost</b> is provided.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"12 1","pages":"105-117"},"PeriodicalIF":2.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174798/pdf/nihms-1656432.pdf","citationCount":"1","resultStr":"{\"title\":\"SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified Proportional Hazards Model via Gradient Boosting.\",\"authors\":\"Emily Morris, Kevin He, Yanming Li, Yi Li, Jian Kang\",\"doi\":\"10.32614/rj-2020-018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-dimensional variable selection in the proportional hazards (PH) model has many successful applications in different areas. In practice, data may involve confounding variables that do not satisfy the PH assumption, in which case the stratified proportional hazards (SPH) model can be adopted to control the confounding effects by stratification without directly modeling the confounding effects. However, there is a lack of computationally efficient statistical software for high-dimensional variable selection in the SPH model. In this work an R package, <b>SurvBoost</b>, is developed to implement the gradient boosting algorithm for fitting the SPH model with high-dimensional covariate variables. Simulation studies demonstrate that in many scenarios <b>SurvBoost</b> can achieve better selection accuracy and reduce computational time substantially compared to the existing R package that implements boosting algorithms without stratification. The proposed R package is also illustrated by an analysis of gene expression data with survival outcome in The Cancer Genome Atlas study. In addition, a detailed hands-on tutorial for <b>SurvBoost</b> is provided.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"12 1\",\"pages\":\"105-117\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174798/pdf/nihms-1656432.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2020-018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2020-018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified Proportional Hazards Model via Gradient Boosting.
High-dimensional variable selection in the proportional hazards (PH) model has many successful applications in different areas. In practice, data may involve confounding variables that do not satisfy the PH assumption, in which case the stratified proportional hazards (SPH) model can be adopted to control the confounding effects by stratification without directly modeling the confounding effects. However, there is a lack of computationally efficient statistical software for high-dimensional variable selection in the SPH model. In this work an R package, SurvBoost, is developed to implement the gradient boosting algorithm for fitting the SPH model with high-dimensional covariate variables. Simulation studies demonstrate that in many scenarios SurvBoost can achieve better selection accuracy and reduce computational time substantially compared to the existing R package that implements boosting algorithms without stratification. The proposed R package is also illustrated by an analysis of gene expression data with survival outcome in The Cancer Genome Atlas study. In addition, a detailed hands-on tutorial for SurvBoost is provided.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.