Robert Ringseis, Lukas Peter, Denise K Gessner, Sandra Meyer, Erika Most, Klaus Eder
{"title":"黄粉虫幼虫饲料对生长猪组织抗氧化状态及应激反应途径的影响。","authors":"Robert Ringseis, Lukas Peter, Denise K Gessner, Sandra Meyer, Erika Most, Klaus Eder","doi":"10.1080/1745039X.2021.1950106","DOIUrl":null,"url":null,"abstract":"<p><p>Insect meal (IM) produced from edible insects, such as <i>Tenebrio molitor</i>, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from <i>Tenebrio molitor</i> larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from <i>Tenebrio molitor</i> larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (<i>p</i> < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and <i>Tenebrio molitor</i> larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from <i>Tenebrio molitor</i> larvae can be regarded as a safe source of protein in growing pigs.</p>","PeriodicalId":8157,"journal":{"name":"Archives of Animal Nutrition","volume":"75 4","pages":"237-250"},"PeriodicalIF":2.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1745039X.2021.1950106","citationCount":"5","resultStr":"{\"title\":\"Effect of <i>Tenebrio molitor</i> larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs.\",\"authors\":\"Robert Ringseis, Lukas Peter, Denise K Gessner, Sandra Meyer, Erika Most, Klaus Eder\",\"doi\":\"10.1080/1745039X.2021.1950106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insect meal (IM) produced from edible insects, such as <i>Tenebrio molitor</i>, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from <i>Tenebrio molitor</i> larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from <i>Tenebrio molitor</i> larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (<i>p</i> < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and <i>Tenebrio molitor</i> larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from <i>Tenebrio molitor</i> larvae can be regarded as a safe source of protein in growing pigs.</p>\",\"PeriodicalId\":8157,\"journal\":{\"name\":\"Archives of Animal Nutrition\",\"volume\":\"75 4\",\"pages\":\"237-250\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1745039X.2021.1950106\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1745039X.2021.1950106\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1745039X.2021.1950106","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs.
Insect meal (IM) produced from edible insects, such as Tenebrio molitor, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from Tenebrio molitor larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from Tenebrio molitor larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (p < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and Tenebrio molitor larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from Tenebrio molitor larvae can be regarded as a safe source of protein in growing pigs.
期刊介绍:
Archives of Animal Nutrition is an international journal covering the biochemical and physiological basis of animal nutrition. Emphasis is laid on original papers on protein and amino acid metabolism, energy transformation, mineral metabolism, vitamin metabolism, nutritional effects on intestinal and body functions in combination with performance criteria, respectively. It furthermore deals with recent developments in practical animal feeding, feedstuff theory, mode of action of feed additives, feedstuff preservation and feedstuff processing. The spectrum covers all relevant animal species including food producing and companion animals, but not aquatic species.
Seldom can priority be given to papers covering more descriptive studies, even if they may be interesting and technically sound or of impact for animal production, or for topics of relevance for only particular regional conditions.