{"title":"什么是dynr:一个在R中的线性和非线性动态建模包。","authors":"Lu Ou, Michael D Hunter, Sy-Miin Chow","doi":"10.32614/rj-2019-012","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in nature, and may involve multiple units undergoing regime switches by showing discontinuities interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear differential/difference equation models with regime switches, there has been a scarcity of software packages that are fast and freely accessible. We have created an R package called <b>dynr</b> that can handle a broad class of linear and nonlinear discrete- and continuous-time models, with regime-switching properties and linear Gaussian measurement functions, in C, while maintaining simple and easy-to-learn model specification functions in R. We present the mathematical and computational bases used by the <b>dynr</b> R package, and present two illustrative examples to demonstrate the unique features of <b>dynr</b>.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"11 1","pages":"91-111"},"PeriodicalIF":2.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297742/pdf/nihms-1719194.pdf","citationCount":"38","resultStr":"{\"title\":\"What's for dynr: A Package for Linear and Nonlinear Dynamic Modeling in R.\",\"authors\":\"Lu Ou, Michael D Hunter, Sy-Miin Chow\",\"doi\":\"10.32614/rj-2019-012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in nature, and may involve multiple units undergoing regime switches by showing discontinuities interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear differential/difference equation models with regime switches, there has been a scarcity of software packages that are fast and freely accessible. We have created an R package called <b>dynr</b> that can handle a broad class of linear and nonlinear discrete- and continuous-time models, with regime-switching properties and linear Gaussian measurement functions, in C, while maintaining simple and easy-to-learn model specification functions in R. We present the mathematical and computational bases used by the <b>dynr</b> R package, and present two illustrative examples to demonstrate the unique features of <b>dynr</b>.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"11 1\",\"pages\":\"91-111\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297742/pdf/nihms-1719194.pdf\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2019-012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2019-012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
What's for dynr: A Package for Linear and Nonlinear Dynamic Modeling in R.
Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in nature, and may involve multiple units undergoing regime switches by showing discontinuities interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear differential/difference equation models with regime switches, there has been a scarcity of software packages that are fast and freely accessible. We have created an R package called dynr that can handle a broad class of linear and nonlinear discrete- and continuous-time models, with regime-switching properties and linear Gaussian measurement functions, in C, while maintaining simple and easy-to-learn model specification functions in R. We present the mathematical and computational bases used by the dynr R package, and present two illustrative examples to demonstrate the unique features of dynr.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.