使用微波自定制足部矫形器进行长距离跑步时的冲击加速度。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-01 Epub Date: 2021-06-14 DOI:10.1080/14763141.2021.1902553
Irene Jimenez-Perez, Jose Ignacio Priego-Quesada, Andrés Camacho-García, Rosa Mª Cibrián Ortiz de Anda, Pedro Pérez-Soriano
{"title":"使用微波自定制足部矫形器进行长距离跑步时的冲击加速度。","authors":"Irene Jimenez-Perez, Jose Ignacio Priego-Quesada, Andrés Camacho-García, Rosa Mª Cibrián Ortiz de Anda, Pedro Pérez-Soriano","doi":"10.1080/14763141.2021.1902553","DOIUrl":null,"url":null,"abstract":"<p><p>The use of custom-made foot orthoses has been associated with numerous benefits, such as decreased impact accelerations. However, it is not known whether this effect could be due to better customisation. The present study analysed the effects of the first generation of  a microwavable prefabricated self-customised foot orthosis vs. a prefabricated standard one on impact accelerations throughout a prolonged run. Thirty runners performed two tests of 30-min running on a treadmill, each one with an orthosis condition. Impact acceleration variables of tibia and head were recorded every 5 min. Microwavable self-customised foot orthosis increased the following variables in the first instants compared to the prefabricated standard one: tibial peak (min1: 6.5 (1.8) vs. 6.0 (1.7) g, <i>P</i> = .009, min5: 6.6 (1.7) vs. 6.2 (1.7) g, <i>P</i> = .035), tibial magnitude (min1: 8.3 (2.6) vs. 7.7 (2.4) g, <i>P</i> = .030, min5: 8.5 (2.6) vs. 7.9 (2.5) g, <i>P</i> = .026) and shock attenuation (min1: 61.4 (16.8) vs. 56.3 (16.3)%, <i>P</i> = .014, min5: 62.0 (15.5) vs. 57.2 (15.3)%, <i>P</i> = .040), and tibial rate throughout the entire run (504.3 (229.7) vs. 422.7 (212.9) g/s, <i>P</i> = .006). However, it was more stable throughout 30-min running (<i>P</i> < .05). These results show that the shape customisation entailed by the thermoformable material does not provide impact acceleration improvements.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact accelerations during a prolonged run using a microwavable self-customised foot orthosis.\",\"authors\":\"Irene Jimenez-Perez, Jose Ignacio Priego-Quesada, Andrés Camacho-García, Rosa Mª Cibrián Ortiz de Anda, Pedro Pérez-Soriano\",\"doi\":\"10.1080/14763141.2021.1902553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of custom-made foot orthoses has been associated with numerous benefits, such as decreased impact accelerations. However, it is not known whether this effect could be due to better customisation. The present study analysed the effects of the first generation of  a microwavable prefabricated self-customised foot orthosis vs. a prefabricated standard one on impact accelerations throughout a prolonged run. Thirty runners performed two tests of 30-min running on a treadmill, each one with an orthosis condition. Impact acceleration variables of tibia and head were recorded every 5 min. Microwavable self-customised foot orthosis increased the following variables in the first instants compared to the prefabricated standard one: tibial peak (min1: 6.5 (1.8) vs. 6.0 (1.7) g, <i>P</i> = .009, min5: 6.6 (1.7) vs. 6.2 (1.7) g, <i>P</i> = .035), tibial magnitude (min1: 8.3 (2.6) vs. 7.7 (2.4) g, <i>P</i> = .030, min5: 8.5 (2.6) vs. 7.9 (2.5) g, <i>P</i> = .026) and shock attenuation (min1: 61.4 (16.8) vs. 56.3 (16.3)%, <i>P</i> = .014, min5: 62.0 (15.5) vs. 57.2 (15.3)%, <i>P</i> = .040), and tibial rate throughout the entire run (504.3 (229.7) vs. 422.7 (212.9) g/s, <i>P</i> = .006). However, it was more stable throughout 30-min running (<i>P</i> < .05). These results show that the shape customisation entailed by the thermoformable material does not provide impact acceleration improvements.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2021.1902553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1902553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

使用定制的足部矫形器有很多好处,例如可以降低冲击加速度。然而,这种效果是否归功于更好的定制还不得而知。本研究分析了第一代微波预制自定制足部矫形器与预制标准足部矫形器在整个长跑过程中对冲击加速度的影响。30 名跑步者在跑步机上进行了两次 30 分钟的跑步测试,每次测试都使用了一种矫形器。每 5 分钟记录一次胫骨和头部的冲击加速度变量。6) vs. 7.7 (2.4) g, P = .030, min5: 8.5 (2.6) vs. 7.9 (2.5) g, P = .026) 和冲击衰减(min1: 61.4 (16.8) vs. 56.3 (16.3)%, P = .014,第 5 分钟:62.0 (15.5) vs. 57.2 (15.3)%,P = .040),以及整个跑步过程中的胫骨速率(504.3 (229.7) vs. 422.7 (212.9) g/s,P = .006)。然而,在整个 30 分钟的跑步过程中,胫骨率更为稳定(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact accelerations during a prolonged run using a microwavable self-customised foot orthosis.

The use of custom-made foot orthoses has been associated with numerous benefits, such as decreased impact accelerations. However, it is not known whether this effect could be due to better customisation. The present study analysed the effects of the first generation of  a microwavable prefabricated self-customised foot orthosis vs. a prefabricated standard one on impact accelerations throughout a prolonged run. Thirty runners performed two tests of 30-min running on a treadmill, each one with an orthosis condition. Impact acceleration variables of tibia and head were recorded every 5 min. Microwavable self-customised foot orthosis increased the following variables in the first instants compared to the prefabricated standard one: tibial peak (min1: 6.5 (1.8) vs. 6.0 (1.7) g, P = .009, min5: 6.6 (1.7) vs. 6.2 (1.7) g, P = .035), tibial magnitude (min1: 8.3 (2.6) vs. 7.7 (2.4) g, P = .030, min5: 8.5 (2.6) vs. 7.9 (2.5) g, P = .026) and shock attenuation (min1: 61.4 (16.8) vs. 56.3 (16.3)%, P = .014, min5: 62.0 (15.5) vs. 57.2 (15.3)%, P = .040), and tibial rate throughout the entire run (504.3 (229.7) vs. 422.7 (212.9) g/s, P = .006). However, it was more stable throughout 30-min running (P < .05). These results show that the shape customisation entailed by the thermoformable material does not provide impact acceleration improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1