DMP1在CKD-MBD中的作用。

IF 4.3 2区 医学 Current Osteoporosis Reports Pub Date : 2021-10-01 Epub Date: 2021-07-31 DOI:10.1007/s11914-021-00697-5
Aline Martin, Dominik Kentrup
{"title":"DMP1在CKD-MBD中的作用。","authors":"Aline Martin,&nbsp;Dominik Kentrup","doi":"10.1007/s11914-021-00697-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD.</p><p><strong>Recent findings: </strong>Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11914-021-00697-5","citationCount":"4","resultStr":"{\"title\":\"The Role of DMP1 in CKD-MBD.\",\"authors\":\"Aline Martin,&nbsp;Dominik Kentrup\",\"doi\":\"10.1007/s11914-021-00697-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD.</p><p><strong>Recent findings: </strong>Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.</p>\",\"PeriodicalId\":48750,\"journal\":{\"name\":\"Current Osteoporosis Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11914-021-00697-5\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Osteoporosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11914-021-00697-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-021-00697-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

综述目的:慢性肾脏疾病矿物质和骨骼障碍(CKD-MBD)已成为全球健康危机,治疗选择非常有限。牙本质基质蛋白1(DMP1)是骨细胞分泌的一种基质细胞外蛋白,其可能参与CKD-MBD的发病机制引起了人们的兴趣。这是对DMP1已建立的调节和功能的综述,以及涉及DMP1在CKD-MBD中的早期研究。最近的发现:CKD患者和小鼠表现出骨中DMP1表达的紊乱,与骨细胞成熟、矿化受损和成纤维细胞生长因子23(FGF23)产生增加有关。在CKD患者中,低循环DMP1水平与心血管事件增加独立相关。我们最近发现,补充DMP1可以降低CKD小鼠的循环FGF23水平,改善骨矿化和心脏预后。CKD患者的死亡率极高,几十年来仅略有改善。骨病和FGF23过量分别会增加骨折和心血管疾病的风险,从而导致CKD的死亡率。先前的研究集中在DMP1功能缺失突变上,已经确定了它在调节FGF23和骨矿化中的作用。最近的研究表明,补充DMP1可以通过改善CKD患者的骨骼和心脏健康来填补关键的治疗空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of DMP1 in CKD-MBD.

Purpose of review: Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD.

Recent findings: Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Osteoporosis Reports
Current Osteoporosis Reports ENDOCRINOLOGY & METABOLISM-
CiteScore
8.40
自引率
2.30%
发文量
44
期刊介绍: This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.
期刊最新文献
Adiposity and Mineral Balance in Chronic Kidney Disease. Between a Rock and a Short Place-The Impact of Nephrolithiasis on Skeletal Growth and Development Across the Lifespan. Vitamin D-Do Diet Recommendations for Health Remain Strong? Correction: Bringing Mechanical Context to Image-Based Measurements of Bone Integrity. Practical Compass of Single-Cell RNA-Seq Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1