{"title":"阳极氧化法制备TiO2纳米管的抗菌和生物行为。","authors":"Robinson Aguirre Ocampo, Félix E Echeverria","doi":"10.1615/CritRevBiomedEng.2021037758","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium dioxide nanotubes combine the geometrical properties of a tubular structure with the physico-chemical properties of TiO2. The nanotubes improve the surface characteristics of a material such as titanium, which possesses high mechanical resistance, and low density, enhancing its use for biomedical devices. The nanotubular layer increases the device's interaction with cells. In this paper, we discuss various aspects of the anodizing technique to obtain ordered nanotubes and careful control of the process parameters to obtain highly ordered TiO2 nanotubes. Also, we review the biological activity of TiO2 nanotubes, the effect of nanotube size on bioactivity, and the antibacterial effect of TiO2 nanotubes without doping. Finally, novel applications of TiO2 nanotubes employed as a biomaterial are discussed.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"49 1","pages":"51-65"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Antibacterial and Biological Behavior of TiO2 Nanotubes Produced by Anodizing Technique.\",\"authors\":\"Robinson Aguirre Ocampo, Félix E Echeverria\",\"doi\":\"10.1615/CritRevBiomedEng.2021037758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium dioxide nanotubes combine the geometrical properties of a tubular structure with the physico-chemical properties of TiO2. The nanotubes improve the surface characteristics of a material such as titanium, which possesses high mechanical resistance, and low density, enhancing its use for biomedical devices. The nanotubular layer increases the device's interaction with cells. In this paper, we discuss various aspects of the anodizing technique to obtain ordered nanotubes and careful control of the process parameters to obtain highly ordered TiO2 nanotubes. Also, we review the biological activity of TiO2 nanotubes, the effect of nanotube size on bioactivity, and the antibacterial effect of TiO2 nanotubes without doping. Finally, novel applications of TiO2 nanotubes employed as a biomaterial are discussed.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"49 1\",\"pages\":\"51-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2021037758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2021037758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Antibacterial and Biological Behavior of TiO2 Nanotubes Produced by Anodizing Technique.
Titanium dioxide nanotubes combine the geometrical properties of a tubular structure with the physico-chemical properties of TiO2. The nanotubes improve the surface characteristics of a material such as titanium, which possesses high mechanical resistance, and low density, enhancing its use for biomedical devices. The nanotubular layer increases the device's interaction with cells. In this paper, we discuss various aspects of the anodizing technique to obtain ordered nanotubes and careful control of the process parameters to obtain highly ordered TiO2 nanotubes. Also, we review the biological activity of TiO2 nanotubes, the effect of nanotube size on bioactivity, and the antibacterial effect of TiO2 nanotubes without doping. Finally, novel applications of TiO2 nanotubes employed as a biomaterial are discussed.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.