人类竞技游泳的推进力:直接评估方法的系统回顾。

IF 2 3区 医学 Q3 ENGINEERING, BIOMEDICAL Sports Biomechanics Pub Date : 2024-10-01 Epub Date: 2021-08-09 DOI:10.1080/14763141.2021.1953574
Catarina C Santos, Daniel A Marinho, Henrique P Neiva, Mário J Costa
{"title":"人类竞技游泳的推进力:直接评估方法的系统回顾。","authors":"Catarina C Santos, Daniel A Marinho, Henrique P Neiva, Mário J Costa","doi":"10.1080/14763141.2021.1953574","DOIUrl":null,"url":null,"abstract":"<p><p>Human propulsive forces are a key-factor to enhance swimming performance, but there is scarce knowledge when using direct assessments. The aim of this review was to analyse the evidence about human propulsive forces in competitive swimming measured by direct assessment methods. A search up to 30 June 2020 was performed in Web of Science, PubMed, and Scopus databases. The Downs and Black Quality Assessment Checklist was used to assess the quality index (QI) of the included studies. Out of 2530 screened records, 35 articles met the inclusion criteria. Tethered-swimming and differential pressure sensors allow directly measure propulsive forces. Cross-sectional designs measured peak and mean propulsive force during the front crawl stroke and including men/boys (≥15 years-old) at different competitive levels were mostly reported. Men are more able to show higher propulsive forces than women counterparts. Short- and long-term effects were observed while using dry-land and in-water training programmes. The magnitude of propulsive force is dependent on the type of assessment method, swimming stroke, number of body limbs and gender. While the short-term effects supporting the different training programmes lead to an increase in propulsive force, there is a lack of long-term evidence.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1263-1283"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propulsive forces in human competitive swimming: a systematic review on direct assessment methods.\",\"authors\":\"Catarina C Santos, Daniel A Marinho, Henrique P Neiva, Mário J Costa\",\"doi\":\"10.1080/14763141.2021.1953574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human propulsive forces are a key-factor to enhance swimming performance, but there is scarce knowledge when using direct assessments. The aim of this review was to analyse the evidence about human propulsive forces in competitive swimming measured by direct assessment methods. A search up to 30 June 2020 was performed in Web of Science, PubMed, and Scopus databases. The Downs and Black Quality Assessment Checklist was used to assess the quality index (QI) of the included studies. Out of 2530 screened records, 35 articles met the inclusion criteria. Tethered-swimming and differential pressure sensors allow directly measure propulsive forces. Cross-sectional designs measured peak and mean propulsive force during the front crawl stroke and including men/boys (≥15 years-old) at different competitive levels were mostly reported. Men are more able to show higher propulsive forces than women counterparts. Short- and long-term effects were observed while using dry-land and in-water training programmes. The magnitude of propulsive force is dependent on the type of assessment method, swimming stroke, number of body limbs and gender. While the short-term effects supporting the different training programmes lead to an increase in propulsive force, there is a lack of long-term evidence.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1263-1283\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2021.1953574\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1953574","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人体推进力是提高游泳成绩的关键因素,但在使用直接评估方法时却缺乏相关知识。本综述旨在分析通过直接评估方法测量竞技游泳中人体推进力的相关证据。截至 2020 年 6 月 30 日,在 Web of Science、PubMed 和 Scopus 数据库中进行了检索。采用唐斯和布莱克质量评估检查表来评估纳入研究的质量指标(QI)。在筛选出的 2530 条记录中,有 35 篇文章符合纳入标准。系绳游泳和压差传感器可直接测量推进力。横断面设计测量了前爬泳过程中的峰值和平均推进力,其中包括不同竞技水平的男子/男孩(≥15 岁)。男性比女性更能表现出更高的推进力。在使用旱地和水中训练计划时,观察到了短期和长期效果。推进力的大小取决于评估方法的类型、游泳动作、肢体数量和性别。虽然短期效果支持不同的训练计划能增加推进力,但缺乏长期证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propulsive forces in human competitive swimming: a systematic review on direct assessment methods.

Human propulsive forces are a key-factor to enhance swimming performance, but there is scarce knowledge when using direct assessments. The aim of this review was to analyse the evidence about human propulsive forces in competitive swimming measured by direct assessment methods. A search up to 30 June 2020 was performed in Web of Science, PubMed, and Scopus databases. The Downs and Black Quality Assessment Checklist was used to assess the quality index (QI) of the included studies. Out of 2530 screened records, 35 articles met the inclusion criteria. Tethered-swimming and differential pressure sensors allow directly measure propulsive forces. Cross-sectional designs measured peak and mean propulsive force during the front crawl stroke and including men/boys (≥15 years-old) at different competitive levels were mostly reported. Men are more able to show higher propulsive forces than women counterparts. Short- and long-term effects were observed while using dry-land and in-water training programmes. The magnitude of propulsive force is dependent on the type of assessment method, swimming stroke, number of body limbs and gender. While the short-term effects supporting the different training programmes lead to an increase in propulsive force, there is a lack of long-term evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Biomechanics
Sports Biomechanics 医学-工程:生物医学
CiteScore
5.70
自引率
9.10%
发文量
135
审稿时长
>12 weeks
期刊介绍: Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic). Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly. Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.
期刊最新文献
Association between T2 relaxation time and biomechanical loading of the anterior cruciate ligament in healthy individuals. A comparison of maximal isometric force in the first pull, transition and second pull of the clean and their contribution to predict performance in national and international level weightlifters. Angular motion of the thorax during the golf swing: a comparison of two orientation angle sequences. Associations between force-velocity-power profile in sprinting and ballistic lower limb tests in adolescent elite footballers. Differences in kinematics, kinetics, and muscle activity between underwater dolphin kicking and flutter kicking: multiple approaches using three-dimensional motion analysis, electromyography, and hydrodynamic simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1