壳聚糖/PNVCL磁性双响应半ipn纳米凝胶及其BSA释放行为研究。

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2021-09-01 Epub Date: 2021-08-09 DOI:10.1007/s40204-021-00161-8
Hamed Mohammad Gholiha, Morteza Ehsani, Ardeshir Saeidi, Azam Ghadami, Najmeh Alizadeh
{"title":"壳聚糖/PNVCL磁性双响应半ipn纳米凝胶及其BSA释放行为研究。","authors":"Hamed Mohammad Gholiha,&nbsp;Morteza Ehsani,&nbsp;Ardeshir Saeidi,&nbsp;Azam Ghadami,&nbsp;Najmeh Alizadeh","doi":"10.1007/s40204-021-00161-8","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and Fe<sub>3</sub>O<sub>4</sub>. The formation of MTRSI-NGs has been confirmed by FTIR, and the average molecular weight of PNVCL was determined by GPC analysis. Rheological and turbidimetry analysis were used to determine lower critical solution temperature (LCST) of PNVCL and magnetic thermo-responsive nanogels (MTRSI-NGs) around 32 and 37 °C, respectively. FE-SEM analysis showed particle size at less than 20 nm in the dried state. Dynamic light scattering determined particle size at about 30 nm in a swelling state. The analysis of release behavior showed that the BSA release ratio at 40 °C was faster than 25 °C. The pH release behavior was evaluated at pH 5.5 and 7.4 and showed that the drug release rate at pH 5.5 was more rapid than pH 7.4. The results show MTRSI-NGs are applicable to protein targeted delivery by thermosensitive targeted drug delivery systems.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511182/pdf/40204_2021_Article_161.pdf","citationCount":"3","resultStr":"{\"title\":\"Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior.\",\"authors\":\"Hamed Mohammad Gholiha,&nbsp;Morteza Ehsani,&nbsp;Ardeshir Saeidi,&nbsp;Azam Ghadami,&nbsp;Najmeh Alizadeh\",\"doi\":\"10.1007/s40204-021-00161-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and Fe<sub>3</sub>O<sub>4</sub>. The formation of MTRSI-NGs has been confirmed by FTIR, and the average molecular weight of PNVCL was determined by GPC analysis. Rheological and turbidimetry analysis were used to determine lower critical solution temperature (LCST) of PNVCL and magnetic thermo-responsive nanogels (MTRSI-NGs) around 32 and 37 °C, respectively. FE-SEM analysis showed particle size at less than 20 nm in the dried state. Dynamic light scattering determined particle size at about 30 nm in a swelling state. The analysis of release behavior showed that the BSA release ratio at 40 °C was faster than 25 °C. The pH release behavior was evaluated at pH 5.5 and 7.4 and showed that the drug release rate at pH 5.5 was more rapid than pH 7.4. The results show MTRSI-NGs are applicable to protein targeted delivery by thermosensitive targeted drug delivery systems.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511182/pdf/40204_2021_Article_161.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00161-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00161-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

磁性热响应纳米凝胶是一种很有前途的靶向药物递送新方法。在本研究中,研制了牛血清白蛋白(BSA)负载热响应磁性半ipn纳米凝胶(MTRSI-NGs)。首先采用自由基聚合法制备了聚n -乙烯基己内酰胺(PNVCL),然后在壳聚糖和Fe3O4存在下用壳聚糖交联制备了MTRSI-NGs。FTIR证实了MTRSI-NGs的形成,GPC分析确定了PNVCL的平均分子量。采用流变学和浊度法分别测定了PNVCL和磁性热响应纳米凝胶(MTRSI-NGs)在32℃和37℃左右的较低临界溶液温度(LCST)。FE-SEM分析表明,干燥状态下的颗粒尺寸小于20 nm。动态光散射测定了膨胀状态下约30 nm处的颗粒尺寸。释放行为分析表明,在40°C时,BSA的释放比25°C时更快。在pH为5.5和7.4时对药物的释放行为进行了评价,结果表明,pH为5.5时药物的释放速度比pH为7.4时更快。结果表明,MTRSI-NGs可用于热敏靶向药物递送系统的蛋白质靶向递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior.

Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and Fe3O4. The formation of MTRSI-NGs has been confirmed by FTIR, and the average molecular weight of PNVCL was determined by GPC analysis. Rheological and turbidimetry analysis were used to determine lower critical solution temperature (LCST) of PNVCL and magnetic thermo-responsive nanogels (MTRSI-NGs) around 32 and 37 °C, respectively. FE-SEM analysis showed particle size at less than 20 nm in the dried state. Dynamic light scattering determined particle size at about 30 nm in a swelling state. The analysis of release behavior showed that the BSA release ratio at 40 °C was faster than 25 °C. The pH release behavior was evaluated at pH 5.5 and 7.4 and showed that the drug release rate at pH 5.5 was more rapid than pH 7.4. The results show MTRSI-NGs are applicable to protein targeted delivery by thermosensitive targeted drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1