水热法制备钛植入体氟羟基磷灰石/锶涂层的研究。

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2021-09-01 Epub Date: 2021-08-09 DOI:10.1007/s40204-021-00162-7
Ahmad Moloodi, Haniyeh Toraby, Saeed Kahrobaee, Morteza Kafaie Razavi, Akram Salehi
{"title":"水热法制备钛植入体氟羟基磷灰石/锶涂层的研究。","authors":"Ahmad Moloodi,&nbsp;Haniyeh Toraby,&nbsp;Saeed Kahrobaee,&nbsp;Morteza Kafaie Razavi,&nbsp;Akram Salehi","doi":"10.1007/s40204-021-00162-7","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"10 3","pages":"185-194"},"PeriodicalIF":4.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511198/pdf/40204_2021_Article_162.pdf","citationCount":"6","resultStr":"{\"title\":\"Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment.\",\"authors\":\"Ahmad Moloodi,&nbsp;Haniyeh Toraby,&nbsp;Saeed Kahrobaee,&nbsp;Morteza Kafaie Razavi,&nbsp;Akram Salehi\",\"doi\":\"10.1007/s40204-021-00162-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":\"10 3\",\"pages\":\"185-194\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511198/pdf/40204_2021_Article_162.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00162-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00162-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 6

摘要

钛及其合金被认为是不可修复骨的合适替代物。磷酸钙涂层被广泛用于提高钛合金的骨诱导和骨整合能力。为了进一步提高磷酸钙包被植入物的性能,引入锶(Sr)来部分取代钙离子。本研究研究了锶离子对氟羟基磷灰石(FHA)涂层Ti6Al4V合金的影响,并在水热条件下对所有涂层进行了处理。采用x射线衍射(XRD)和扫描电镜(SEM)分别对材料的物相和微观结构进行了表征。通过剪切试验对涂层的粘结强度进行了评价。通过MTT、黏附和碱性磷酸酶测试来评估样品的生物相容性和成骨行为。结果表明,掺锶FHA样品的平均晶粒尺寸为48 nm,结合强度比包覆FHA样品提高了13.15%。方差分析显示,所有MTT试验的p值均大于0.322,未发现7天后细胞死亡的证据。ALP试验结果显示,Sr样品在第7 ~ 14天细胞活性的增加是FHA样品的3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment.

Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1