{"title":"使用真实骨模型和柔性天线阵列的非侵入性微波热疗骨癌治疗。","authors":"M Dilruba Geyikoglu, Bulent Cavusoglu","doi":"10.1080/15368378.2021.1965069","DOIUrl":null,"url":null,"abstract":"<p><p>In this manuscript, a method for noninvasive microwave hyperthermia treatment for bone cancer is proposed. In the proposed method, noninvasive microwave hyperthermia of cancer patient-specific bone models is practiced using an antenna array based on the beamforming technique to locally raise the temperature of the tumor to healing values during keeping healthy tissue at body temperature. The excitation properties of the antenna array elements have been optimized using the Trust Region Framework optimization technique in order to accurately focus. The proposed method is examined at 2.7 and 4.5 GHz, using a flexible antenna array of 1 × 4 antenna elements. Based on the hyperthermia simulation results, when the antenna excitation properties are determined by optimization, it is observed that positive results can be obtained for the treatment of tumorous tissue. In the proposed technique, it is achieved by keeping the heating effect at minimum values in healthy tissues and focusing the power in the tumor position by applying electromagnetic waves to the patient-specific bone model.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 3","pages":"353-360"},"PeriodicalIF":1.6000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays.\",\"authors\":\"M Dilruba Geyikoglu, Bulent Cavusoglu\",\"doi\":\"10.1080/15368378.2021.1965069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this manuscript, a method for noninvasive microwave hyperthermia treatment for bone cancer is proposed. In the proposed method, noninvasive microwave hyperthermia of cancer patient-specific bone models is practiced using an antenna array based on the beamforming technique to locally raise the temperature of the tumor to healing values during keeping healthy tissue at body temperature. The excitation properties of the antenna array elements have been optimized using the Trust Region Framework optimization technique in order to accurately focus. The proposed method is examined at 2.7 and 4.5 GHz, using a flexible antenna array of 1 × 4 antenna elements. Based on the hyperthermia simulation results, when the antenna excitation properties are determined by optimization, it is observed that positive results can be obtained for the treatment of tumorous tissue. In the proposed technique, it is achieved by keeping the heating effect at minimum values in healthy tissues and focusing the power in the tumor position by applying electromagnetic waves to the patient-specific bone model.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\"40 3\",\"pages\":\"353-360\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2021.1965069\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2021.1965069","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays.
In this manuscript, a method for noninvasive microwave hyperthermia treatment for bone cancer is proposed. In the proposed method, noninvasive microwave hyperthermia of cancer patient-specific bone models is practiced using an antenna array based on the beamforming technique to locally raise the temperature of the tumor to healing values during keeping healthy tissue at body temperature. The excitation properties of the antenna array elements have been optimized using the Trust Region Framework optimization technique in order to accurately focus. The proposed method is examined at 2.7 and 4.5 GHz, using a flexible antenna array of 1 × 4 antenna elements. Based on the hyperthermia simulation results, when the antenna excitation properties are determined by optimization, it is observed that positive results can be obtained for the treatment of tumorous tissue. In the proposed technique, it is achieved by keeping the heating effect at minimum values in healthy tissues and focusing the power in the tumor position by applying electromagnetic waves to the patient-specific bone model.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.