Ian L Gordon, Seth Casden, Mark Vangel, Michael R Hamblin
{"title":"含有42% Celliant™纤维的衬衫对健康受试者tcPO2水平和握力的影响:一项安慰剂对照临床试验。","authors":"Ian L Gordon, Seth Casden, Mark Vangel, Michael R Hamblin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Celliant™ fabric contains quartz, silicon oxide and titanium oxide particles embedded into polymer fibers. Garments woven with Celliant™ yarns can be activated by body heat (conduction, convection and radiation) and remit the energy as far infrared radiation (FIR) back into the body. Wearing Celliant garments has been shown to increase blood flow and oxygen levels in the skin. In the present study we recruited twenty-four healthy volunteers (18-60 years of age) to wear a placebo shirt for 90 minutes, and after a 15-minute break, to wear a real Celliant shirt for 90 minutes. The mean transcutaneous oxygen (tcPO<sub>2</sub>) measured over two sites (biceps and abdomen) was significantly increased at 3 time points (30, 60, and 90 minutes) by between 5-8% (P<0.05) in Celliant vs. placebo. The mean grip strength in the dominant hand measured at 90 minutes was 12.44% higher after wearing Celliant vs. after placebo (p=0.0002). There was a small but significant increase in systolic blood pressure (113.71 vs. 109.38; p=0.02) but no statistically significant changes in diastolic or mean blood pressure, heart rate, or skin temperature. These data provide more evidence of the physiological effects of FIR emitting garments and suggest they could be used for athletic training and recovery.</p>","PeriodicalId":17128,"journal":{"name":"Journal of Textile Science & Engineering","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351537/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Shirts with 42% Celliant™ Fiber on tcPO<sub>2</sub> Levels and Grip Strength in Healthy Subjects: A Placebo-controlled Clinical Trial.\",\"authors\":\"Ian L Gordon, Seth Casden, Mark Vangel, Michael R Hamblin\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Celliant™ fabric contains quartz, silicon oxide and titanium oxide particles embedded into polymer fibers. Garments woven with Celliant™ yarns can be activated by body heat (conduction, convection and radiation) and remit the energy as far infrared radiation (FIR) back into the body. Wearing Celliant garments has been shown to increase blood flow and oxygen levels in the skin. In the present study we recruited twenty-four healthy volunteers (18-60 years of age) to wear a placebo shirt for 90 minutes, and after a 15-minute break, to wear a real Celliant shirt for 90 minutes. The mean transcutaneous oxygen (tcPO<sub>2</sub>) measured over two sites (biceps and abdomen) was significantly increased at 3 time points (30, 60, and 90 minutes) by between 5-8% (P<0.05) in Celliant vs. placebo. The mean grip strength in the dominant hand measured at 90 minutes was 12.44% higher after wearing Celliant vs. after placebo (p=0.0002). There was a small but significant increase in systolic blood pressure (113.71 vs. 109.38; p=0.02) but no statistically significant changes in diastolic or mean blood pressure, heart rate, or skin temperature. These data provide more evidence of the physiological effects of FIR emitting garments and suggest they could be used for athletic training and recovery.</p>\",\"PeriodicalId\":17128,\"journal\":{\"name\":\"Journal of Textile Science & Engineering\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Textile Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Textile Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Shirts with 42% Celliant™ Fiber on tcPO2 Levels and Grip Strength in Healthy Subjects: A Placebo-controlled Clinical Trial.
Celliant™ fabric contains quartz, silicon oxide and titanium oxide particles embedded into polymer fibers. Garments woven with Celliant™ yarns can be activated by body heat (conduction, convection and radiation) and remit the energy as far infrared radiation (FIR) back into the body. Wearing Celliant garments has been shown to increase blood flow and oxygen levels in the skin. In the present study we recruited twenty-four healthy volunteers (18-60 years of age) to wear a placebo shirt for 90 minutes, and after a 15-minute break, to wear a real Celliant shirt for 90 minutes. The mean transcutaneous oxygen (tcPO2) measured over two sites (biceps and abdomen) was significantly increased at 3 time points (30, 60, and 90 minutes) by between 5-8% (P<0.05) in Celliant vs. placebo. The mean grip strength in the dominant hand measured at 90 minutes was 12.44% higher after wearing Celliant vs. after placebo (p=0.0002). There was a small but significant increase in systolic blood pressure (113.71 vs. 109.38; p=0.02) but no statistically significant changes in diastolic or mean blood pressure, heart rate, or skin temperature. These data provide more evidence of the physiological effects of FIR emitting garments and suggest they could be used for athletic training and recovery.