Christina S Moesslacher, Johanna M Kohlmayr, Ulrich Stelzl
{"title":"探索酵母中缺失蛋白的功能:分析翻译后修饰和人类遗传变异。","authors":"Christina S Moesslacher, Johanna M Kohlmayr, Ulrich Stelzl","doi":"10.15698/mic2021.08.756","DOIUrl":null,"url":null,"abstract":"<p><p>Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are <i>absent</i>. It is this absence of protein function that is fundamental to approaches using yeast as an <i>in vivo</i> test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate <i>absent</i> human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring <i>absent</i> protein function in yeast: assaying post translational modification and human genetic variation.\",\"authors\":\"Christina S Moesslacher, Johanna M Kohlmayr, Ulrich Stelzl\",\"doi\":\"10.15698/mic2021.08.756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are <i>absent</i>. It is this absence of protein function that is fundamental to approaches using yeast as an <i>in vivo</i> test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate <i>absent</i> human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2021.08.756\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/2 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2021.08.756","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/2 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploring absent protein function in yeast: assaying post translational modification and human genetic variation.
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.