术后疼痛和肠道菌群

Q2 Medicine Neurobiology of Pain Pub Date : 2021-08-01 DOI:10.1016/j.ynpai.2021.100070
David Brenner , George D. Shorten , Siobhain M. O'Mahony
{"title":"术后疼痛和肠道菌群","authors":"David Brenner ,&nbsp;George D. Shorten ,&nbsp;Siobhain M. O'Mahony","doi":"10.1016/j.ynpai.2021.100070","DOIUrl":null,"url":null,"abstract":"<div><p>In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications.</p><p>As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"10 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361255/pdf/","citationCount":"11","resultStr":"{\"title\":\"Postoperative pain and the gut microbiome\",\"authors\":\"David Brenner ,&nbsp;George D. Shorten ,&nbsp;Siobhain M. O'Mahony\",\"doi\":\"10.1016/j.ynpai.2021.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications.</p><p>As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.</p></div>\",\"PeriodicalId\":52177,\"journal\":{\"name\":\"Neurobiology of Pain\",\"volume\":\"10 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361255/pdf/\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Pain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452073X21000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Pain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452073X21000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11

摘要

全世界每年进行的外科手术超过3亿例。尽管认识到术后疼痛的普遍性,以及疼痛管理技术的改进,术后疼痛控制不良仍然是全球未解决的主要挑战。估计分别有71%和51%的患者在住院和门诊手术后经历中度至重度疼痛。术后疼痛控制不充分与围手术期并发症相关,包括心肌梗死和肺部并发症。多达20-56%的患者在进行疝气修补、子宫切除和开胸等常规手术后出现慢性疼痛。传统的镇痛药和干预措施在治疗术后疼痛方面往往无效或部分有效,导致慢性疼痛,并带来相关的社会经济影响,降低患者的生活质量。这种发生在手术后的慢性疼痛被称为持续性术后疼痛(PPSP)。胃肠道微生物群(包括细菌、真菌、病毒、噬菌体)的复杂生态系统在维持宿主的健康状态中起着至关重要的作用。这种微生物群平衡的破坏不仅与胃肠道疾病有关,还与包括慢性疼痛在内的神经系统疾病有关。肠道微生物组的影响在胃肠道内脏疼痛的背景下得到了很好的记录,同时对炎症性疼痛和神经性疼痛(两者都可能发生在围手术期)的影响有了更深入的了解。肠道微生物群是驱动免疫成熟和维持适当免疫反应的重要来源。鉴于炎症过程与术后疼痛有关,异常的微生物组谱可能在这种类型疼痛的发展中起作用。此外,我们肠道中的微生物产生代谢物、神经递质和神经调节剂,它们与受体相互作用,调节与慢性疼痛相关的外周和中枢致敏。微生物源介质还可以调节神经炎症,这与小胶质细胞的激活以及免疫细胞的浸润有关,已知可调节中枢致敏的发展和维持。此外,发生术后疼痛的危险因素包括焦虑、抑郁和应激反应增加。这些中枢神经系统相关疾病与肠道微生物组的改变有关,针对微生物组的干预研究表明这些疾病有所改善。女性更容易遭受术后疼痛。由于性腺激素与不同的微生物组有关,临床前研究表明,男性微生物组可以保护男性免受炎症性疼痛,因此微生物组及其副产物的组成可能会增加术后疼痛发生的风险。很少有证据表明微生物群与躯体疼痛有关。在这里,我们讨论肠道微生物组在其他躯体疼痛综合征的背景下,在术后疼痛的病因学和病理生理学中的潜在作用,以及已知的微生物-神经元相互作用。需要进行调查以确定肠道微生物组在这类疼痛中的具体作用,这可能有助于制定预防干预措施以及改善患者预后的管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Postoperative pain and the gut microbiome

In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications.

As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Pain
Neurobiology of Pain Medicine-Anesthesiology and Pain Medicine
CiteScore
4.40
自引率
0.00%
发文量
29
审稿时长
54 days
期刊最新文献
An investigation on the role of oxytocin in chronic neuropathic pain in a Wistar rat model Adult zymosan re-exposure exacerbates the molecular alterations in the brainstem rostral ventromedial medulla of rats with early life zymosan-induced cystitis Neuronal activation patterns during self-referential pain imagination Interleukin-6 induces nascent protein synthesis in human dorsal root ganglion nociceptors primarily via MNK-eIF4E signaling The timing of the mouse hind paw incision does not influence postsurgical pain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1