{"title":"在存在未知干扰的情况下的平均治疗效果。","authors":"Fredrik Sävje, Peter Aronow, Michael Hudgens","doi":"10.1214/20-aos1973","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate large-sample properties of treatment effect estimators under unknown interference in randomized experiments. The inferential target is a generalization of the average treatment effect estimand that marginalizes over potential spillover effects. We show that estimators commonly used to estimate treatment effects under no interference are consistent for the generalized estimand for several common experimental designs under limited but otherwise arbitrary and unknown interference. The rates of convergence depend on the rate at which the amount of interference grows and the degree to which it aligns with dependencies in treatment assignment. Importantly for practitioners, the results imply that if one erroneously assumes that units do not interfere in a setting with limited, or even moderate, interference, standard estimators are nevertheless likely to be close to an average treatment effect if the sample is sufficiently large. Conventional confidence statements may, however, not be accurate.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372033/pdf/nihms-1683738.pdf","citationCount":"0","resultStr":"{\"title\":\"AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.\",\"authors\":\"Fredrik Sävje, Peter Aronow, Michael Hudgens\",\"doi\":\"10.1214/20-aos1973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate large-sample properties of treatment effect estimators under unknown interference in randomized experiments. The inferential target is a generalization of the average treatment effect estimand that marginalizes over potential spillover effects. We show that estimators commonly used to estimate treatment effects under no interference are consistent for the generalized estimand for several common experimental designs under limited but otherwise arbitrary and unknown interference. The rates of convergence depend on the rate at which the amount of interference grows and the degree to which it aligns with dependencies in treatment assignment. Importantly for practitioners, the results imply that if one erroneously assumes that units do not interfere in a setting with limited, or even moderate, interference, standard estimators are nevertheless likely to be close to an average treatment effect if the sample is sufficiently large. Conventional confidence statements may, however, not be accurate.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372033/pdf/nihms-1683738.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aos1973\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aos1973","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.
We investigate large-sample properties of treatment effect estimators under unknown interference in randomized experiments. The inferential target is a generalization of the average treatment effect estimand that marginalizes over potential spillover effects. We show that estimators commonly used to estimate treatment effects under no interference are consistent for the generalized estimand for several common experimental designs under limited but otherwise arbitrary and unknown interference. The rates of convergence depend on the rate at which the amount of interference grows and the degree to which it aligns with dependencies in treatment assignment. Importantly for practitioners, the results imply that if one erroneously assumes that units do not interfere in a setting with limited, or even moderate, interference, standard estimators are nevertheless likely to be close to an average treatment effect if the sample is sufficiently large. Conventional confidence statements may, however, not be accurate.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.