{"title":"竞技游泳中四肢关节在起动过程中的动力学。","authors":"Shin Sakai, Sekiya Koike, Tsuyoshi Takeda, Yasuo Sengoku, Miwako Homma, Hideki Takagi","doi":"10.1080/14763141.2021.1963465","DOIUrl":null,"url":null,"abstract":"<p><p>The kick-start technique in competitive swimming generates a force acting on the starting platform owing to gravity, muscle contraction and resulting joint torque. To understand optimal body movement on the starting platform for maximising take-off velocity, it is necessary to investigate the joint torque in relation to the joint's rotation effects. Joint torques were calculated by inverse dynamics using kinetic and kinematic data. A one-way ANOVA showed significantly greater extensional torque for shoulders than for elbows or wrists, and for hips than for knees or ankles. The results indicated that the force of the hands was mainly influenced by extension torque at the shoulder joint. Hip joint extension torque on the front side lower limb (FSLL) was mainly used for supporting the body weight until hands off. After hands off, the front-foot force originated mainly by increases in ankle joint plantar flexion and knee joint extension torque on the FSLL. Rear side lower limb torque increases in the hip, knee and ankle joints provided the rear-foot force. This investigation clarified the magnitudes and functions of each joint torque acting on the extremities during the kick-start, providing practical information for improving starting performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1606-1624"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of four limb joints during kick-start motion in competitive swimming.\",\"authors\":\"Shin Sakai, Sekiya Koike, Tsuyoshi Takeda, Yasuo Sengoku, Miwako Homma, Hideki Takagi\",\"doi\":\"10.1080/14763141.2021.1963465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kick-start technique in competitive swimming generates a force acting on the starting platform owing to gravity, muscle contraction and resulting joint torque. To understand optimal body movement on the starting platform for maximising take-off velocity, it is necessary to investigate the joint torque in relation to the joint's rotation effects. Joint torques were calculated by inverse dynamics using kinetic and kinematic data. A one-way ANOVA showed significantly greater extensional torque for shoulders than for elbows or wrists, and for hips than for knees or ankles. The results indicated that the force of the hands was mainly influenced by extension torque at the shoulder joint. Hip joint extension torque on the front side lower limb (FSLL) was mainly used for supporting the body weight until hands off. After hands off, the front-foot force originated mainly by increases in ankle joint plantar flexion and knee joint extension torque on the FSLL. Rear side lower limb torque increases in the hip, knee and ankle joints provided the rear-foot force. This investigation clarified the magnitudes and functions of each joint torque acting on the extremities during the kick-start, providing practical information for improving starting performance.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1606-1624\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2021.1963465\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1963465","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Kinetics of four limb joints during kick-start motion in competitive swimming.
The kick-start technique in competitive swimming generates a force acting on the starting platform owing to gravity, muscle contraction and resulting joint torque. To understand optimal body movement on the starting platform for maximising take-off velocity, it is necessary to investigate the joint torque in relation to the joint's rotation effects. Joint torques were calculated by inverse dynamics using kinetic and kinematic data. A one-way ANOVA showed significantly greater extensional torque for shoulders than for elbows or wrists, and for hips than for knees or ankles. The results indicated that the force of the hands was mainly influenced by extension torque at the shoulder joint. Hip joint extension torque on the front side lower limb (FSLL) was mainly used for supporting the body weight until hands off. After hands off, the front-foot force originated mainly by increases in ankle joint plantar flexion and knee joint extension torque on the FSLL. Rear side lower limb torque increases in the hip, knee and ankle joints provided the rear-foot force. This investigation clarified the magnitudes and functions of each joint torque acting on the extremities during the kick-start, providing practical information for improving starting performance.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.