重组促进了基因调控网络中新性状的遗传同化

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Evolution & Development Pub Date : 2021-08-29 DOI:10.1111/ede.12391
Carlos Espinosa-Soto, Ulises Hernández, Yuridia S. Posadas-García
{"title":"重组促进了基因调控网络中新性状的遗传同化","authors":"Carlos Espinosa-Soto,&nbsp;Ulises Hernández,&nbsp;Yuridia S. Posadas-García","doi":"10.1111/ede.12391","DOIUrl":null,"url":null,"abstract":"<p>A new phenotypic variant may appear first in organisms through plasticity, that is, as a response to an environmental signal or other nongenetic perturbation. If such trait is beneficial, selection may increase the frequency of alleles that enable and facilitate its development. Thus, genes may take control of such traits, decreasing dependence on nongenetic disturbances, in a process called genetic assimilation. Despite an increasing amount of empirical studies supporting genetic assimilation, its significance is still controversial. Whether genetic assimilation is widespread depends, to a great extent, on how easily mutation and recombination reduce the trait's dependence on nongenetic perturbations. Previous research suggests that this is the case for mutations. Here we use simulations of gene regulatory network dynamics to address this issue with respect to recombination. We find that recombinant offspring of parents that produce a new phenotype through plasticity are more likely to produce the same phenotype without requiring any perturbation. They are also prone to preserve the ability to produce that phenotype after genetic and nongenetic perturbations. Our work also suggests that ancestral plasticity can play an important role for setting the course that evolution takes. In sum, our results indicate that the manner in which phenotypic variation maps unto genetic variation facilitates evolution through genetic assimilation in gene regulatory networks. Thus, we contend that the importance of this evolutionary mechanism should not be easily neglected.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ede.12391","citationCount":"4","resultStr":"{\"title\":\"Recombination facilitates genetic assimilation of new traits in gene regulatory networks\",\"authors\":\"Carlos Espinosa-Soto,&nbsp;Ulises Hernández,&nbsp;Yuridia S. Posadas-García\",\"doi\":\"10.1111/ede.12391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new phenotypic variant may appear first in organisms through plasticity, that is, as a response to an environmental signal or other nongenetic perturbation. If such trait is beneficial, selection may increase the frequency of alleles that enable and facilitate its development. Thus, genes may take control of such traits, decreasing dependence on nongenetic disturbances, in a process called genetic assimilation. Despite an increasing amount of empirical studies supporting genetic assimilation, its significance is still controversial. Whether genetic assimilation is widespread depends, to a great extent, on how easily mutation and recombination reduce the trait's dependence on nongenetic perturbations. Previous research suggests that this is the case for mutations. Here we use simulations of gene regulatory network dynamics to address this issue with respect to recombination. We find that recombinant offspring of parents that produce a new phenotype through plasticity are more likely to produce the same phenotype without requiring any perturbation. They are also prone to preserve the ability to produce that phenotype after genetic and nongenetic perturbations. Our work also suggests that ancestral plasticity can play an important role for setting the course that evolution takes. In sum, our results indicate that the manner in which phenotypic variation maps unto genetic variation facilitates evolution through genetic assimilation in gene regulatory networks. Thus, we contend that the importance of this evolutionary mechanism should not be easily neglected.</p>\",\"PeriodicalId\":12083,\"journal\":{\"name\":\"Evolution & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ede.12391\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12391\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

一种新的表型变异可能首先通过可塑性在生物体中出现,也就是说,作为对环境信号或其他非遗传扰动的反应。如果这种特性是有益的,选择可能会增加使其发育的等位基因的频率。因此,基因可以控制这些性状,减少对非遗传干扰的依赖,这一过程被称为遗传同化。尽管越来越多的实证研究支持遗传同化,但其意义仍然存在争议。遗传同化是否广泛存在,在很大程度上取决于突变和重组是否容易降低性状对非遗传扰动的依赖。先前的研究表明,基因突变就是这种情况。在这里,我们使用基因调控网络动力学模拟来解决有关重组的这个问题。我们发现通过可塑性产生新表型的父母的重组后代更有可能在不需要任何扰动的情况下产生相同的表型。他们也倾向于在遗传和非遗传扰动后保持产生这种表型的能力。我们的研究还表明,祖先的可塑性可以在设定进化过程中发挥重要作用。总之,我们的研究结果表明,表型变异映射到遗传变异的方式促进了基因调控网络中遗传同化的进化。因此,我们认为这种进化机制的重要性不应被轻易忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recombination facilitates genetic assimilation of new traits in gene regulatory networks

A new phenotypic variant may appear first in organisms through plasticity, that is, as a response to an environmental signal or other nongenetic perturbation. If such trait is beneficial, selection may increase the frequency of alleles that enable and facilitate its development. Thus, genes may take control of such traits, decreasing dependence on nongenetic disturbances, in a process called genetic assimilation. Despite an increasing amount of empirical studies supporting genetic assimilation, its significance is still controversial. Whether genetic assimilation is widespread depends, to a great extent, on how easily mutation and recombination reduce the trait's dependence on nongenetic perturbations. Previous research suggests that this is the case for mutations. Here we use simulations of gene regulatory network dynamics to address this issue with respect to recombination. We find that recombinant offspring of parents that produce a new phenotype through plasticity are more likely to produce the same phenotype without requiring any perturbation. They are also prone to preserve the ability to produce that phenotype after genetic and nongenetic perturbations. Our work also suggests that ancestral plasticity can play an important role for setting the course that evolution takes. In sum, our results indicate that the manner in which phenotypic variation maps unto genetic variation facilitates evolution through genetic assimilation in gene regulatory networks. Thus, we contend that the importance of this evolutionary mechanism should not be easily neglected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
期刊最新文献
Issue information A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia. Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution Front cover Issue information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1