J Q Li, B D Wingfield, M J Wingfield, I Barnes, A Fourie, P W Crous, S F Chen
{"title":"calonecia的交配基因和异thalic祖先状态的证据。","authors":"J Q Li, B D Wingfield, M J Wingfield, I Barnes, A Fourie, P W Crous, S F Chen","doi":"10.3767/persoonia.2020.45.06","DOIUrl":null,"url":null,"abstract":"<p><p>The genus <i>Calonectria</i> includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven <i>Calonectria</i> species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 <i>Calonectria</i> species residing in 10 <i>Calonectria</i> species complexes. Results showed that the organisation of the <i>MAT</i> locus and flanking genes is conserved. In heterothallic species, a novel <i>MAT</i> gene, <i>MAT1-2-12</i> was identified in the <i>MAT1-2</i> idiomorph; the <i>MAT1-1</i> idiomorph, in most cases, contained the <i>MAT1-1-3</i> gene. Neither <i>MAT1-1-3</i> nor <i>MAT1-2-12</i> was found in homothallic <i>Calonectria</i> (<i>Ca</i>.) <i>hongkongensis</i>, <i>Ca. lateralis</i>, <i>Ca. pseudoturangicola</i> and <i>Ca. turangicola</i>. Four different homothallic <i>MAT</i> locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in <i>Calonectria</i> and this evolved from a heterothallic ancestor.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"163-176"},"PeriodicalIF":9.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/fd/per-2020-45-6.PMC8375350.pdf","citationCount":"15","resultStr":"{\"title\":\"Mating genes in <i>Calonectria</i> and evidence for a heterothallic ancestral state.\",\"authors\":\"J Q Li, B D Wingfield, M J Wingfield, I Barnes, A Fourie, P W Crous, S F Chen\",\"doi\":\"10.3767/persoonia.2020.45.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genus <i>Calonectria</i> includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven <i>Calonectria</i> species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 <i>Calonectria</i> species residing in 10 <i>Calonectria</i> species complexes. Results showed that the organisation of the <i>MAT</i> locus and flanking genes is conserved. In heterothallic species, a novel <i>MAT</i> gene, <i>MAT1-2-12</i> was identified in the <i>MAT1-2</i> idiomorph; the <i>MAT1-1</i> idiomorph, in most cases, contained the <i>MAT1-1-3</i> gene. Neither <i>MAT1-1-3</i> nor <i>MAT1-2-12</i> was found in homothallic <i>Calonectria</i> (<i>Ca</i>.) <i>hongkongensis</i>, <i>Ca. lateralis</i>, <i>Ca. pseudoturangicola</i> and <i>Ca. turangicola</i>. Four different homothallic <i>MAT</i> locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in <i>Calonectria</i> and this evolved from a heterothallic ancestor.</p>\",\"PeriodicalId\":20014,\"journal\":{\"name\":\"Persoonia\",\"volume\":\"45 \",\"pages\":\"163-176\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/fd/per-2020-45-6.PMC8375350.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Persoonia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3767/persoonia.2020.45.06\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Persoonia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3767/persoonia.2020.45.06","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Mating genes in Calonectria and evidence for a heterothallic ancestral state.
The genus Calonectria includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven Calonectria species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 Calonectria species residing in 10 Calonectria species complexes. Results showed that the organisation of the MAT locus and flanking genes is conserved. In heterothallic species, a novel MAT gene, MAT1-2-12 was identified in the MAT1-2 idiomorph; the MAT1-1 idiomorph, in most cases, contained the MAT1-1-3 gene. Neither MAT1-1-3 nor MAT1-2-12 was found in homothallic Calonectria (Ca.) hongkongensis, Ca. lateralis, Ca. pseudoturangicola and Ca. turangicola. Four different homothallic MAT locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in Calonectria and this evolved from a heterothallic ancestor.
期刊介绍:
Persoonia aspires to publish papers focusing on the molecular systematics and evolution of fungi. Additionally, it seeks to advance fungal taxonomy by employing a polythetic approach to elucidate the genuine phylogeny and relationships within the kingdom Fungi. The journal is dedicated to disseminating high-quality papers that unravel both known and novel fungal taxa at the DNA level. Moreover, it endeavors to provide fresh insights into evolutionary processes and relationships. The scope of papers considered encompasses research articles, along with topical and book reviews.