{"title":"r-X1缺失导致玉米B染色体末端缺陷。","authors":"Yen-Hua Huang, Tzu-Che Lin, Wan-Yi Chiou, Ya-Ming Cheng","doi":"10.1007/s10577-021-09671-4","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the r-X1 deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the r-X1 deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the r-X1-containing progeny of r-X1/R-r female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identified as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the r-X1 deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more finely map B-derived miRNA genes on the B chromosome. Our results indicate that the r-X1 deletion results in TDs of the B chromosome in maize, and the r-X1 deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The r-X1 deletion induces terminal deficiencies in the maize B chromosome.\",\"authors\":\"Yen-Hua Huang, Tzu-Che Lin, Wan-Yi Chiou, Ya-Ming Cheng\",\"doi\":\"10.1007/s10577-021-09671-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the r-X1 deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the r-X1 deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the r-X1-containing progeny of r-X1/R-r female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identified as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the r-X1 deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more finely map B-derived miRNA genes on the B chromosome. Our results indicate that the r-X1 deletion results in TDs of the B chromosome in maize, and the r-X1 deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-021-09671-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-021-09671-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The r-X1 deletion induces terminal deficiencies in the maize B chromosome.
In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the r-X1 deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the r-X1 deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the r-X1-containing progeny of r-X1/R-r female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identified as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the r-X1 deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more finely map B-derived miRNA genes on the B chromosome. Our results indicate that the r-X1 deletion results in TDs of the B chromosome in maize, and the r-X1 deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.