Keyan Chen, Xiaoyang Yu, Xinyu Zhang, Xiaona Li, Yang Liu, Meiru Si, Tao Su
{"title":"真菌硫醇依赖还原酶NCgl0018参与谷氨酸棒状杆菌氧化应激反应。","authors":"Keyan Chen, Xiaoyang Yu, Xinyu Zhang, Xiaona Li, Yang Liu, Meiru Si, Tao Su","doi":"10.2323/jgam.2021.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>Corynebacterium glutamicum is an important industrial strain for amino acids and a key model organism for human pathogens. The study of C. glutamicum oxidoreductases, such as mycoredoxin 1 (Mrx1), dithiol-disulfide isomerase DsbA, and DsbA-like Mrx1, is helpful for understanding the survival, pathogenic infection, and stress resistance of its homologous species. However, the action mode and enzymatic function of C. glutamicum NCgl0018 preserving the Cys-Pro-Phe-Cys motif, annotated as a putative DsbA, have remained enigmatic. Here, we report that the NCgl0018-deleted strain increased sensitivity to various oxidative stresses. The ncgl0018 expression was induced in the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH- and organic peroxide- and antibiotic-sensing regulator (OasR)-dependent manner by stress. NCgl0018 reduced S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol-disulfide mechanism preferentially linking the mycothiol/mycothione reductase/NADPH electron pathway. Site-directed mutagenesis confirmed Cys107 was the resolving Cys residue, while Cys104 was the nucleophilic cysteine that was oxidized to a sulfenic acid and then could form an intramolecular disulfide bond with Cys107 or a mixed disulfide with mycothiol under stress. Biochemical analyses indicated that NCgl0018 lacked oxidase properties like the classical DsbA. Further, enzymatic rates and substrate preferences of NCgl0018 were highly similar to those of DsbA-like Mrx1. Collectively, our study presented the first evidence that NCgl0018 protected against stresses by functioning as a novel DsbA-like Mrx1 but not DsbA and Mrx1.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"67 6","pages":"225-239"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum.\",\"authors\":\"Keyan Chen, Xiaoyang Yu, Xinyu Zhang, Xiaona Li, Yang Liu, Meiru Si, Tao Su\",\"doi\":\"10.2323/jgam.2021.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corynebacterium glutamicum is an important industrial strain for amino acids and a key model organism for human pathogens. The study of C. glutamicum oxidoreductases, such as mycoredoxin 1 (Mrx1), dithiol-disulfide isomerase DsbA, and DsbA-like Mrx1, is helpful for understanding the survival, pathogenic infection, and stress resistance of its homologous species. However, the action mode and enzymatic function of C. glutamicum NCgl0018 preserving the Cys-Pro-Phe-Cys motif, annotated as a putative DsbA, have remained enigmatic. Here, we report that the NCgl0018-deleted strain increased sensitivity to various oxidative stresses. The ncgl0018 expression was induced in the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH- and organic peroxide- and antibiotic-sensing regulator (OasR)-dependent manner by stress. NCgl0018 reduced S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol-disulfide mechanism preferentially linking the mycothiol/mycothione reductase/NADPH electron pathway. Site-directed mutagenesis confirmed Cys107 was the resolving Cys residue, while Cys104 was the nucleophilic cysteine that was oxidized to a sulfenic acid and then could form an intramolecular disulfide bond with Cys107 or a mixed disulfide with mycothiol under stress. Biochemical analyses indicated that NCgl0018 lacked oxidase properties like the classical DsbA. Further, enzymatic rates and substrate preferences of NCgl0018 were highly similar to those of DsbA-like Mrx1. Collectively, our study presented the first evidence that NCgl0018 protected against stresses by functioning as a novel DsbA-like Mrx1 but not DsbA and Mrx1.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":\"67 6\",\"pages\":\"225-239\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2021.03.005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2021.03.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum.
Corynebacterium glutamicum is an important industrial strain for amino acids and a key model organism for human pathogens. The study of C. glutamicum oxidoreductases, such as mycoredoxin 1 (Mrx1), dithiol-disulfide isomerase DsbA, and DsbA-like Mrx1, is helpful for understanding the survival, pathogenic infection, and stress resistance of its homologous species. However, the action mode and enzymatic function of C. glutamicum NCgl0018 preserving the Cys-Pro-Phe-Cys motif, annotated as a putative DsbA, have remained enigmatic. Here, we report that the NCgl0018-deleted strain increased sensitivity to various oxidative stresses. The ncgl0018 expression was induced in the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH- and organic peroxide- and antibiotic-sensing regulator (OasR)-dependent manner by stress. NCgl0018 reduced S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol-disulfide mechanism preferentially linking the mycothiol/mycothione reductase/NADPH electron pathway. Site-directed mutagenesis confirmed Cys107 was the resolving Cys residue, while Cys104 was the nucleophilic cysteine that was oxidized to a sulfenic acid and then could form an intramolecular disulfide bond with Cys107 or a mixed disulfide with mycothiol under stress. Biochemical analyses indicated that NCgl0018 lacked oxidase properties like the classical DsbA. Further, enzymatic rates and substrate preferences of NCgl0018 were highly similar to those of DsbA-like Mrx1. Collectively, our study presented the first evidence that NCgl0018 protected against stresses by functioning as a novel DsbA-like Mrx1 but not DsbA and Mrx1.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.