对计算持久同源性的R包进行基准测试。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2021-06-01 Epub Date: 2021-06-07 DOI:10.32614/RJ-2021-033
Eashwar V Somasundaram, Shael E Brown, Adam Litzler, Jacob G Scott, Raoul R Wadhwa
{"title":"对计算持久同源性的R包进行基准测试。","authors":"Eashwar V Somasundaram,&nbsp;Shael E Brown,&nbsp;Adam Litzler,&nbsp;Jacob G Scott,&nbsp;Raoul R Wadhwa","doi":"10.32614/RJ-2021-033","DOIUrl":null,"url":null,"abstract":"<p><p>Several persistent homology software libraries have been implemented in R. Specifically, the Dionysus, GUDHI, and Ripser libraries have been wrapped by the <b>TDA</b> and <b>TDAstats</b> CRAN packages. These software represent powerful analysis tools that are computationally expensive and, to our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions can be evaluated with persistent homology fastest by the GUDHI library in the <b>TDA</b> package. For higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and <b>TDAstats</b> are also the most memory-efficient tools to calculate persistent homology.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"13 1","pages":"184-193"},"PeriodicalIF":2.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434812/pdf/nihms-1733366.pdf","citationCount":"7","resultStr":"{\"title\":\"Benchmarking R packages for Calculation of Persistent Homology.\",\"authors\":\"Eashwar V Somasundaram,&nbsp;Shael E Brown,&nbsp;Adam Litzler,&nbsp;Jacob G Scott,&nbsp;Raoul R Wadhwa\",\"doi\":\"10.32614/RJ-2021-033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several persistent homology software libraries have been implemented in R. Specifically, the Dionysus, GUDHI, and Ripser libraries have been wrapped by the <b>TDA</b> and <b>TDAstats</b> CRAN packages. These software represent powerful analysis tools that are computationally expensive and, to our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions can be evaluated with persistent homology fastest by the GUDHI library in the <b>TDA</b> package. For higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and <b>TDAstats</b> are also the most memory-efficient tools to calculate persistent homology.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"13 1\",\"pages\":\"184-193\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434812/pdf/nihms-1733366.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/RJ-2021-033\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/RJ-2021-033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

摘要

几个持久化同源软件库已经在r中实现了。具体来说,Dionysus、GUDHI和Ripser库已经被TDA和TDAstats的CRAN包封装。这些软件代表了强大的分析工具,但它们在计算上很昂贵,而且据我们所知,还没有经过正式的基准测试。在这里,我们将分析两个R包和3个底层库的运行时和内存增长情况。我们发现,使用TDA包中的GUDHI库可以最快地对小于3维的数据集进行持久同源性计算。对于高维数据集,TDAstats包中的Ripser库是最快的。Ripser和TDAstats也是计算持久同源性的最节省内存的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking R packages for Calculation of Persistent Homology.

Several persistent homology software libraries have been implemented in R. Specifically, the Dionysus, GUDHI, and Ripser libraries have been wrapped by the TDA and TDAstats CRAN packages. These software represent powerful analysis tools that are computationally expensive and, to our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions can be evaluated with persistent homology fastest by the GUDHI library in the TDA package. For higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and TDAstats are also the most memory-efficient tools to calculate persistent homology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1