{"title":"毒蕈碱M1受体敲除小鼠皮质基因表达的变化:与精神分裂症、阿尔茨海默病和认知的潜在相关性","authors":"Brian Dean, Elizabeth Scarr","doi":"10.1038/s41537-021-00174-z","DOIUrl":null,"url":null,"abstract":"<p><p>Postmortem and neuroimaging studies show low levels of cortical muscarinic M1 receptors (CHRM1) in patients with schizophrenia which is significant because CHRM signalling has been shown to change levels of gene expression and cortical gene expression is altered in schizophrenia. We decided to identify CHRM1-mediated changes in cortical gene expression by measuring levels of RNA in the cortex of the Chrm1<sup>-/-</sup> mouse (n = 10), where there would be no signalling by that receptor, and in wild type mouse (n = 10) using the Affymetrix Mouse Exon 1.0 ST Array. We detected RNA for 15,501 annotated genes and noncoding RNA of which 1,467 RNAs were higher and 229 RNAs lower in the cortex of the Chrm1<sup>-</sup><sup>/-</sup> mouse. Pathways and proteins affected by the changes in cortical gene expression in the Chrm1<sup>-/-</sup> are linked to the molecular pathology of schizophrenia. Our human cortical gene expression data showed 47 genes had altered expression in Chrm1<sup>-/-</sup> mouse and the frontal pole from patients with schizophrenia with the change in expression of 44 genes being in opposite directions. In addition, genes with altered levels of expression in the Chrm1<sup>-</sup><sup>/-</sup> mouse have been shown to affect amyloid precursor protein processing which is associated with the pathophysiology of Alzheimer's disease, and 69 genes with altered expression in the Chrm1<sup>-</sup><sup>/-</sup> mouse are risk genes associated with human cognitive ability. Our findings argue CHRM1-mediated changes in gene expression are relevant to the pathophysiologies of schizophrenia and Alzheimer's disease and the maintenance of cognitive ability in humans.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440523/pdf/","citationCount":"8","resultStr":"{\"title\":\"Changes in cortical gene expression in the muscarinic M1 receptor knockout mouse: potential relevance to schizophrenia, Alzheimer's disease and cognition.\",\"authors\":\"Brian Dean, Elizabeth Scarr\",\"doi\":\"10.1038/s41537-021-00174-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postmortem and neuroimaging studies show low levels of cortical muscarinic M1 receptors (CHRM1) in patients with schizophrenia which is significant because CHRM signalling has been shown to change levels of gene expression and cortical gene expression is altered in schizophrenia. We decided to identify CHRM1-mediated changes in cortical gene expression by measuring levels of RNA in the cortex of the Chrm1<sup>-/-</sup> mouse (n = 10), where there would be no signalling by that receptor, and in wild type mouse (n = 10) using the Affymetrix Mouse Exon 1.0 ST Array. We detected RNA for 15,501 annotated genes and noncoding RNA of which 1,467 RNAs were higher and 229 RNAs lower in the cortex of the Chrm1<sup>-</sup><sup>/-</sup> mouse. Pathways and proteins affected by the changes in cortical gene expression in the Chrm1<sup>-/-</sup> are linked to the molecular pathology of schizophrenia. Our human cortical gene expression data showed 47 genes had altered expression in Chrm1<sup>-/-</sup> mouse and the frontal pole from patients with schizophrenia with the change in expression of 44 genes being in opposite directions. In addition, genes with altered levels of expression in the Chrm1<sup>-</sup><sup>/-</sup> mouse have been shown to affect amyloid precursor protein processing which is associated with the pathophysiology of Alzheimer's disease, and 69 genes with altered expression in the Chrm1<sup>-</sup><sup>/-</sup> mouse are risk genes associated with human cognitive ability. Our findings argue CHRM1-mediated changes in gene expression are relevant to the pathophysiologies of schizophrenia and Alzheimer's disease and the maintenance of cognitive ability in humans.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440523/pdf/\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-021-00174-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41537-021-00174-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Changes in cortical gene expression in the muscarinic M1 receptor knockout mouse: potential relevance to schizophrenia, Alzheimer's disease and cognition.
Postmortem and neuroimaging studies show low levels of cortical muscarinic M1 receptors (CHRM1) in patients with schizophrenia which is significant because CHRM signalling has been shown to change levels of gene expression and cortical gene expression is altered in schizophrenia. We decided to identify CHRM1-mediated changes in cortical gene expression by measuring levels of RNA in the cortex of the Chrm1-/- mouse (n = 10), where there would be no signalling by that receptor, and in wild type mouse (n = 10) using the Affymetrix Mouse Exon 1.0 ST Array. We detected RNA for 15,501 annotated genes and noncoding RNA of which 1,467 RNAs were higher and 229 RNAs lower in the cortex of the Chrm1-/- mouse. Pathways and proteins affected by the changes in cortical gene expression in the Chrm1-/- are linked to the molecular pathology of schizophrenia. Our human cortical gene expression data showed 47 genes had altered expression in Chrm1-/- mouse and the frontal pole from patients with schizophrenia with the change in expression of 44 genes being in opposite directions. In addition, genes with altered levels of expression in the Chrm1-/- mouse have been shown to affect amyloid precursor protein processing which is associated with the pathophysiology of Alzheimer's disease, and 69 genes with altered expression in the Chrm1-/- mouse are risk genes associated with human cognitive ability. Our findings argue CHRM1-mediated changes in gene expression are relevant to the pathophysiologies of schizophrenia and Alzheimer's disease and the maintenance of cognitive ability in humans.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.