Thomas J Wilkinson, Thomas Yates, Luke A Baker, Francesco Zaccardi, Alice C Smith
{"title":"肌肉减少型肥胖与2019冠状病毒病住院或死亡的风险:来自英国生物银行的研究结果","authors":"Thomas J Wilkinson, Thomas Yates, Luke A Baker, Francesco Zaccardi, Alice C Smith","doi":"10.1002/rco2.47","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2. The role of skeletal muscle mass in modulating immune response is well documented. Whilst obesity is well established as a key factor in COVID-19 and outcome, no study has examined the influence of both sarcopenia (low muscle mass) and obesity, termed 'sarcopenic obesity' on the risk of severe COVID-19.</p><p><strong>Methods: </strong>This study uses data from UK Biobank. Probable sarcopenia was defined as low handgrip strength. Sarcopenic obesity was mutually exclusively defined as the presence of obesity and low muscle mass [based on two established criteria: appendicular lean mass (ALM) adjusted for either (i) height or (ii) body mass index]. Severe COVID-19 was defined by a positive severe acute respiratory syndrome coronavirus 2 test result in a hospital setting and/or death with a primary cause reported as COVID-19. Fully adjusted logistic regression models were used to analyse the associations between sarcopenic status and severe COVID-19. This work was conducted under UK Biobank Application Number 52553.</p><p><strong>Results: </strong>We analysed data from 490 301 UK Biobank participants (median age 70.0 years, 46% male); 2203 (0.4%) had severe COVID-19. Individuals with probable sarcopenia were 64% more likely to have had severe COVID-19 (odds ratio 1.638; <i>P</i> < 0.001). Obesity increased the likelihood of severe COVID-19 by 76% (<i>P</i> < 0.001). Using either ALM index or ALM/body mass index to define low muscle mass, those with sarcopenic obesity were 2.6 times more likely to have severe COVID-19 (odds ratio 2.619; <i>P</i> < 0.001). Sarcopenia alone did not increase the risk of COVID-19.</p><p><strong>Conclusions: </strong>Sarcopenic obesity may increase the risk of severe COVID-19, over that of obesity alone. The mechanisms for this are complex but could be a result of a reduction in respiratory functioning, immune response, and ability to respond to metabolic stress.</p>","PeriodicalId":73544,"journal":{"name":"JCSM rapid communications","volume":"5 1","pages":"3-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/rco2.47","citationCount":"14","resultStr":"{\"title\":\"Sarcopenic obesity and the risk of hospitalization or death from coronavirus disease 2019: findings from UK Biobank.\",\"authors\":\"Thomas J Wilkinson, Thomas Yates, Luke A Baker, Francesco Zaccardi, Alice C Smith\",\"doi\":\"10.1002/rco2.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2. The role of skeletal muscle mass in modulating immune response is well documented. Whilst obesity is well established as a key factor in COVID-19 and outcome, no study has examined the influence of both sarcopenia (low muscle mass) and obesity, termed 'sarcopenic obesity' on the risk of severe COVID-19.</p><p><strong>Methods: </strong>This study uses data from UK Biobank. Probable sarcopenia was defined as low handgrip strength. Sarcopenic obesity was mutually exclusively defined as the presence of obesity and low muscle mass [based on two established criteria: appendicular lean mass (ALM) adjusted for either (i) height or (ii) body mass index]. Severe COVID-19 was defined by a positive severe acute respiratory syndrome coronavirus 2 test result in a hospital setting and/or death with a primary cause reported as COVID-19. Fully adjusted logistic regression models were used to analyse the associations between sarcopenic status and severe COVID-19. This work was conducted under UK Biobank Application Number 52553.</p><p><strong>Results: </strong>We analysed data from 490 301 UK Biobank participants (median age 70.0 years, 46% male); 2203 (0.4%) had severe COVID-19. Individuals with probable sarcopenia were 64% more likely to have had severe COVID-19 (odds ratio 1.638; <i>P</i> < 0.001). Obesity increased the likelihood of severe COVID-19 by 76% (<i>P</i> < 0.001). Using either ALM index or ALM/body mass index to define low muscle mass, those with sarcopenic obesity were 2.6 times more likely to have severe COVID-19 (odds ratio 2.619; <i>P</i> < 0.001). Sarcopenia alone did not increase the risk of COVID-19.</p><p><strong>Conclusions: </strong>Sarcopenic obesity may increase the risk of severe COVID-19, over that of obesity alone. The mechanisms for this are complex but could be a result of a reduction in respiratory functioning, immune response, and ability to respond to metabolic stress.</p>\",\"PeriodicalId\":73544,\"journal\":{\"name\":\"JCSM rapid communications\",\"volume\":\"5 1\",\"pages\":\"3-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/rco2.47\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCSM rapid communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rco2.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCSM rapid communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rco2.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Sarcopenic obesity and the risk of hospitalization or death from coronavirus disease 2019: findings from UK Biobank.
Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2. The role of skeletal muscle mass in modulating immune response is well documented. Whilst obesity is well established as a key factor in COVID-19 and outcome, no study has examined the influence of both sarcopenia (low muscle mass) and obesity, termed 'sarcopenic obesity' on the risk of severe COVID-19.
Methods: This study uses data from UK Biobank. Probable sarcopenia was defined as low handgrip strength. Sarcopenic obesity was mutually exclusively defined as the presence of obesity and low muscle mass [based on two established criteria: appendicular lean mass (ALM) adjusted for either (i) height or (ii) body mass index]. Severe COVID-19 was defined by a positive severe acute respiratory syndrome coronavirus 2 test result in a hospital setting and/or death with a primary cause reported as COVID-19. Fully adjusted logistic regression models were used to analyse the associations between sarcopenic status and severe COVID-19. This work was conducted under UK Biobank Application Number 52553.
Results: We analysed data from 490 301 UK Biobank participants (median age 70.0 years, 46% male); 2203 (0.4%) had severe COVID-19. Individuals with probable sarcopenia were 64% more likely to have had severe COVID-19 (odds ratio 1.638; P < 0.001). Obesity increased the likelihood of severe COVID-19 by 76% (P < 0.001). Using either ALM index or ALM/body mass index to define low muscle mass, those with sarcopenic obesity were 2.6 times more likely to have severe COVID-19 (odds ratio 2.619; P < 0.001). Sarcopenia alone did not increase the risk of COVID-19.
Conclusions: Sarcopenic obesity may increase the risk of severe COVID-19, over that of obesity alone. The mechanisms for this are complex but could be a result of a reduction in respiratory functioning, immune response, and ability to respond to metabolic stress.