Manassés Tercio Vieira Grangeiro, Natalia Rivoli Rossi, Larissa Araújo Lopes Barreto, Marco Antonio Bottino, João Paulo Mendes Tribst
{"title":"不同表面处理对杂化陶瓷表征层结合强度的影响。","authors":"Manassés Tercio Vieira Grangeiro, Natalia Rivoli Rossi, Larissa Araújo Lopes Barreto, Marco Antonio Bottino, João Paulo Mendes Tribst","doi":"10.3290/j.jad.b2000235","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Using the microshear bond strength (µSBS) test, this study investigated the bond strength between a hybrid ceramic and the extrinsic characterization layer after different ceramic surface treatments.</p><p><strong>Materials and methods: </strong>Hybrid ceramic blocks (Vita Enamic, Vita Zahnfabrik) were sectioned and randomly divided into 4 groups (N = 120) according to the surface treatment and aging (n = 15): P: polishing; E: acid etching with HF; A: aluminum oxide blasting; S: self-etching ceramic primer. The specimens were silanized, then cylinders of light-curing characterization material (Vita Enamic Stain, 1.6 mm diameter x 2 mm height) were fabricated, followed by glazing. The specimens were subsequently immersed in distilled water for 24 h and subjected to the µSBS test using a universal testing machine (load cell 0.5 mm/min, 50 kgf) or tested after thermocycling for 10,000 cycles in water (5°C-55°C). After treatment, the specimen surfaces were analyzed using SEM, with failure types defined as adhesive, predominantly adhesive, or cohesive. The data were analyzed by two-way ANOVA followed by Tukey's test (p < 0.05).</p><p><strong>Results: </strong>The most frequent failure type was predominantly adhesive between ceramic and the characterization layer. There were statistically significant differences between the surface treatments (p < 0.05). Thermocycling did not lead to statistically signifcant different results (p > 0.05). For groups P and A, a sharp decrease in SBS was observed.</p><p><strong>Conclusion: </strong>The absence of surface treatment drastically reduced the microshear bond strength between the ceramic and the characterization layer. Conditioning with 5% hydrofluoric acid for 60 s is the most suitable treatment for adhesion of the characterization layer to hybrid ceramic.</p>","PeriodicalId":55604,"journal":{"name":"Journal of Adhesive Dentistry","volume":"23 5","pages":"429-435"},"PeriodicalIF":2.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effect of Different Surface Treatments on the Bond Strength of the Hybrid Ceramic Characterization Layer.\",\"authors\":\"Manassés Tercio Vieira Grangeiro, Natalia Rivoli Rossi, Larissa Araújo Lopes Barreto, Marco Antonio Bottino, João Paulo Mendes Tribst\",\"doi\":\"10.3290/j.jad.b2000235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Using the microshear bond strength (µSBS) test, this study investigated the bond strength between a hybrid ceramic and the extrinsic characterization layer after different ceramic surface treatments.</p><p><strong>Materials and methods: </strong>Hybrid ceramic blocks (Vita Enamic, Vita Zahnfabrik) were sectioned and randomly divided into 4 groups (N = 120) according to the surface treatment and aging (n = 15): P: polishing; E: acid etching with HF; A: aluminum oxide blasting; S: self-etching ceramic primer. The specimens were silanized, then cylinders of light-curing characterization material (Vita Enamic Stain, 1.6 mm diameter x 2 mm height) were fabricated, followed by glazing. The specimens were subsequently immersed in distilled water for 24 h and subjected to the µSBS test using a universal testing machine (load cell 0.5 mm/min, 50 kgf) or tested after thermocycling for 10,000 cycles in water (5°C-55°C). After treatment, the specimen surfaces were analyzed using SEM, with failure types defined as adhesive, predominantly adhesive, or cohesive. The data were analyzed by two-way ANOVA followed by Tukey's test (p < 0.05).</p><p><strong>Results: </strong>The most frequent failure type was predominantly adhesive between ceramic and the characterization layer. There were statistically significant differences between the surface treatments (p < 0.05). Thermocycling did not lead to statistically signifcant different results (p > 0.05). For groups P and A, a sharp decrease in SBS was observed.</p><p><strong>Conclusion: </strong>The absence of surface treatment drastically reduced the microshear bond strength between the ceramic and the characterization layer. Conditioning with 5% hydrofluoric acid for 60 s is the most suitable treatment for adhesion of the characterization layer to hybrid ceramic.</p>\",\"PeriodicalId\":55604,\"journal\":{\"name\":\"Journal of Adhesive Dentistry\",\"volume\":\"23 5\",\"pages\":\"429-435\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesive Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.b2000235\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3290/j.jad.b2000235","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 7
摘要
目的:采用微剪切键合强度(µSBS)测试,研究不同表面处理方式下杂化陶瓷与外源表征层之间的键合强度。材料与方法:将混合陶瓷块(Vita Enamic, Vita Zahnfabrik)按表面处理和时效程度随机分为4组(N = 120) (N = 15): P:抛光;E: HF酸蚀;A:氧化铝爆破;S:自腐蚀陶瓷底漆。将样品进行硅化处理,然后制作光固化表征材料圆柱体(Vita Enamic Stain,直径1.6 mm x 2 mm高),然后上釉。随后将样品浸泡在蒸馏水中24 h,并使用通用试验机(0.5 mm/min, 50 kgf)进行µSBS测试,或在水中(5°C-55°C)进行10,000次热循环测试。处理后,用扫描电镜对试样表面进行分析,失效类型定义为粘接、主要粘接或粘接。采用双因素方差分析,并进行Tukey检验(p < 0.05)。结果:最常见的失效类型主要是陶瓷与表征层之间的粘接。表面处理间差异有统计学意义(p < 0.05)。热循环组差异无统计学意义(p > 0.05)。P组和A组SBS急剧下降。结论:表面处理的缺失大大降低了陶瓷与表征层之间的微剪切结合强度。用5%氢氟酸调理60 s是表征层与杂化陶瓷粘附最合适的处理方法。
Effect of Different Surface Treatments on the Bond Strength of the Hybrid Ceramic Characterization Layer.
Purpose: Using the microshear bond strength (µSBS) test, this study investigated the bond strength between a hybrid ceramic and the extrinsic characterization layer after different ceramic surface treatments.
Materials and methods: Hybrid ceramic blocks (Vita Enamic, Vita Zahnfabrik) were sectioned and randomly divided into 4 groups (N = 120) according to the surface treatment and aging (n = 15): P: polishing; E: acid etching with HF; A: aluminum oxide blasting; S: self-etching ceramic primer. The specimens were silanized, then cylinders of light-curing characterization material (Vita Enamic Stain, 1.6 mm diameter x 2 mm height) were fabricated, followed by glazing. The specimens were subsequently immersed in distilled water for 24 h and subjected to the µSBS test using a universal testing machine (load cell 0.5 mm/min, 50 kgf) or tested after thermocycling for 10,000 cycles in water (5°C-55°C). After treatment, the specimen surfaces were analyzed using SEM, with failure types defined as adhesive, predominantly adhesive, or cohesive. The data were analyzed by two-way ANOVA followed by Tukey's test (p < 0.05).
Results: The most frequent failure type was predominantly adhesive between ceramic and the characterization layer. There were statistically significant differences between the surface treatments (p < 0.05). Thermocycling did not lead to statistically signifcant different results (p > 0.05). For groups P and A, a sharp decrease in SBS was observed.
Conclusion: The absence of surface treatment drastically reduced the microshear bond strength between the ceramic and the characterization layer. Conditioning with 5% hydrofluoric acid for 60 s is the most suitable treatment for adhesion of the characterization layer to hybrid ceramic.
期刊介绍:
New materials and applications for adhesion are profoundly changing the way dentistry is delivered. Bonding techniques, which have long been restricted to the tooth hard tissues, enamel, and dentin, have obvious applications in operative and preventive dentistry, as well as in esthetic and pediatric dentistry, prosthodontics, and orthodontics. The current development of adhesive techniques for soft tissues and slow-releasing agents will expand applications to include periodontics and oral surgery. Scientifically sound, peer-reviewed articles explore the latest innovations in these emerging fields.