方法:建立和评价人类肾脏疾病斑马鱼模型。

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY International Journal of Developmental Biology Pub Date : 2021-01-01 DOI:10.1387/ijdb.210041rs
Sana Fatma, Usharani Nayak, Rajeeb K Swain
{"title":"方法:建立和评价人类肾脏疾病斑马鱼模型。","authors":"Sana Fatma,&nbsp;Usharani Nayak,&nbsp;Rajeeb K Swain","doi":"10.1387/ijdb.210041rs","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney-related disorders affect millions of people worldwide. A survey of chronic kidney disease (CKD) patients showed that the burden of kidney diseases is increasing every year. The global burden of disease (GBD) study 2017 ranked CKD as the 12<sup>th</sup> leading cause of deaths worldwide. Hence, identification of the causes of kidney diseases, development of accurate diagnostic methods and novel therapeutics is highly relevant. Model organisms that faithfully recapitulate human diseases play important roles in understanding the disease process and provide valuable ground to find their cure. Zebrafish is an excellent model to study the development, pathophysiology and molecular aspects of human kidney diseases. In this review, we summarize various genetic and experimental manipulations that can be carried out in zebrafish to better understand the pathophysiology of human kidney diseases. We suggest that these methods will be helpful in the development of potential therapies to treat kidney diseases.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Methods to generate and evaluate zebrafish models of human kidney diseases.\",\"authors\":\"Sana Fatma,&nbsp;Usharani Nayak,&nbsp;Rajeeb K Swain\",\"doi\":\"10.1387/ijdb.210041rs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kidney-related disorders affect millions of people worldwide. A survey of chronic kidney disease (CKD) patients showed that the burden of kidney diseases is increasing every year. The global burden of disease (GBD) study 2017 ranked CKD as the 12<sup>th</sup> leading cause of deaths worldwide. Hence, identification of the causes of kidney diseases, development of accurate diagnostic methods and novel therapeutics is highly relevant. Model organisms that faithfully recapitulate human diseases play important roles in understanding the disease process and provide valuable ground to find their cure. Zebrafish is an excellent model to study the development, pathophysiology and molecular aspects of human kidney diseases. In this review, we summarize various genetic and experimental manipulations that can be carried out in zebrafish to better understand the pathophysiology of human kidney diseases. We suggest that these methods will be helpful in the development of potential therapies to treat kidney diseases.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210041rs\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210041rs","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

肾脏相关疾病影响着全世界数百万人。一项对慢性肾脏病(CKD)患者的调查显示,肾脏疾病的负担每年都在增加。2017年全球疾病负担(GBD)研究将CKD列为全球第12大死亡原因。因此,确定肾脏疾病的病因,发展准确的诊断方法和新的治疗方法是高度相关的。模式生物忠实地概括了人类疾病,在理解疾病过程中发挥着重要作用,并为找到治疗方法提供了宝贵的基础。斑马鱼是研究人类肾脏疾病发生、病理生理和分子方面的良好模型。在这篇综述中,我们总结了各种可以在斑马鱼中进行的遗传和实验操作,以更好地了解人类肾脏疾病的病理生理。我们认为这些方法将有助于开发治疗肾脏疾病的潜在疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods to generate and evaluate zebrafish models of human kidney diseases.

Kidney-related disorders affect millions of people worldwide. A survey of chronic kidney disease (CKD) patients showed that the burden of kidney diseases is increasing every year. The global burden of disease (GBD) study 2017 ranked CKD as the 12th leading cause of deaths worldwide. Hence, identification of the causes of kidney diseases, development of accurate diagnostic methods and novel therapeutics is highly relevant. Model organisms that faithfully recapitulate human diseases play important roles in understanding the disease process and provide valuable ground to find their cure. Zebrafish is an excellent model to study the development, pathophysiology and molecular aspects of human kidney diseases. In this review, we summarize various genetic and experimental manipulations that can be carried out in zebrafish to better understand the pathophysiology of human kidney diseases. We suggest that these methods will be helpful in the development of potential therapies to treat kidney diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
2 months
期刊介绍: The International Journal of Developmental Biology (ISSN: 0214- 6282) is an independent, not for profit scholarly journal, published by scientists, for scientists. The journal publishes papers which throw light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties and cancer. Technical, historical or theoretical approaches also fall within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid publication; free unlimited color reproduction; no page charges; free publication of online supplementary material; free publication of audio files (MP3 type); one-to-one personalized attention at all stages during the editorial process. An easy online submission facility and an open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the journal offers free online subscriptions to academic institutions in developing countries.
期刊最新文献
Single-cell transcriptome profiling reveals distinct expression patterns among genes in the mouse incisor dental pulp. DNA methyltransferase (Dnmt) silencing causes increased Cdx2 and Nanog levels in surviving embryos. Characterization of the developing axolotl nasal cavity supports multiple evolution of the vertebrate choana. The Dyslexia-associated gene KIAA0319L is involved in neuronal migration in the developing chick visual system. Circ-JA760602 promotes the apoptosis of hypoxia-induced cardiomyocytes by transcriptionally suppressing BCL2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1