{"title":"地图和网格。","authors":"Matteo Grasso, Andrew M Haun, Giulio Tononi","doi":"10.1093/nc/niab022","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a \"grid-like\" network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple \"fixation\" function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also \"see\" it-experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space-its extendedness-can be accounted for in objective, neuroscientific terms by the \"cause-effect structure\" specified by the grid-like cortical area. By contrast, a \"map-like\" network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab022"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452603/pdf/","citationCount":"11","resultStr":"{\"title\":\"Of maps and grids.\",\"authors\":\"Matteo Grasso, Andrew M Haun, Giulio Tononi\",\"doi\":\"10.1093/nc/niab022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a \\\"grid-like\\\" network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple \\\"fixation\\\" function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also \\\"see\\\" it-experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space-its extendedness-can be accounted for in objective, neuroscientific terms by the \\\"cause-effect structure\\\" specified by the grid-like cortical area. By contrast, a \\\"map-like\\\" network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.</p>\",\"PeriodicalId\":52242,\"journal\":{\"name\":\"Neuroscience of Consciousness\",\"volume\":\"2021 2\",\"pages\":\"niab022\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452603/pdf/\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience of Consciousness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nc/niab022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, BIOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience of Consciousness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nc/niab022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PSYCHOLOGY, BIOLOGICAL","Score":null,"Total":0}
Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a "grid-like" network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple "fixation" function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also "see" it-experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space-its extendedness-can be accounted for in objective, neuroscientific terms by the "cause-effect structure" specified by the grid-like cortical area. By contrast, a "map-like" network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.