{"title":"近场静电纺丝聚己内酯微纤维模拟微动脉-毛细血管-小静脉结构。","authors":"Imtiaz Qavi, George Z Tan","doi":"10.1007/s40204-021-00165-4","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511189/pdf/40204_2021_Article_165.pdf","citationCount":"2","resultStr":"{\"title\":\"Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure.\",\"authors\":\"Imtiaz Qavi, George Z Tan\",\"doi\":\"10.1007/s40204-021-00165-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511189/pdf/40204_2021_Article_165.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00165-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00165-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure.
The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.