单变量边际分布算法能很好地处理欺骗和溢出

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolutionary Computation Pub Date : 2021-12-01 DOI:10.1162/evco_a_00293
Benjamin Doerr;Martin S. Krejca
{"title":"单变量边际分布算法能很好地处理欺骗和溢出","authors":"Benjamin Doerr;Martin S. Krejca","doi":"10.1162/evco_a_00293","DOIUrl":null,"url":null,"abstract":"In their recent work, Lehre and Nguyen (2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by the choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2elnn) fitness evaluations. Since an offspring population size λ of order nlogn can prevent genetic drift, the UMDA can solve the DLB problem with O(n2logn) fitness evaluations. In contrast, for classic evolutionary algorithms no better runtime guarantee than O(n3) is known (which we prove to be tight for the (1+1) EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than many classic evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"The Univariate Marginal Distribution Algorithm Copes Well with Deception and Epistasis\",\"authors\":\"Benjamin Doerr;Martin S. Krejca\",\"doi\":\"10.1162/evco_a_00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their recent work, Lehre and Nguyen (2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by the choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2elnn) fitness evaluations. Since an offspring population size λ of order nlogn can prevent genetic drift, the UMDA can solve the DLB problem with O(n2logn) fitness evaluations. In contrast, for classic evolutionary algorithms no better runtime guarantee than O(n3) is known (which we prove to be tight for the (1+1) EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than many classic evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses.\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9655688/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9655688/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 24

摘要

Lehre和Nguyen(2019)在他们最近的工作中表明,单变量边际分布算法(UMDA)需要父母群体规模的时间指数来优化欺骗引导块(DLB)问题。他们从这一结果得出结论,单变量EDA在欺骗和上位性方面存在困难。在这项工作中,我们证明了这种负面发现是由UMDA的参数选择引起的。当种群大小选择得足够大以防止遗传漂移时,UMDA以高概率优化DLB问题,最多进行λ(n2+2elnn)适应度评估。由于nlogn阶的后代种群大小λ可以防止遗传漂移,UMDA可以通过O(n2logn)适应度评估来解决DLB问题。相反,对于经典的进化算法,没有比O(n3)更好的运行时保证(我们证明它对于(1+1)EA是严格的),所以我们的结果表明UMDA可以很好地应对欺骗和书信。从更广泛的角度来看,我们的结果表明,UMDA比许多经典的进化算法能够更好地处理局部最优;这样的结果先前仅对于紧凑遗传算法是已知的。结合Lehre和Nguyen的下界,我们的结果首次严格证明了在具有遗传漂移的机制中运行EDA会导致巨大的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Univariate Marginal Distribution Algorithm Copes Well with Deception and Epistasis
In their recent work, Lehre and Nguyen (2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by the choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2elnn) fitness evaluations. Since an offspring population size λ of order nlogn can prevent genetic drift, the UMDA can solve the DLB problem with O(n2logn) fitness evaluations. In contrast, for classic evolutionary algorithms no better runtime guarantee than O(n3) is known (which we prove to be tight for the (1+1) EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than many classic evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
期刊最新文献
Genetic Programming for Automatically Evolving Multiple Features to Classification. A Tri-Objective Method for Bi-Objective Feature Selection in Classification. Preliminary Analysis of Simple Novelty Search. IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1