A Khadre, E Lm Raif, S Junaid, O M Goudouri, W Refaat, A Ramadan, A R Boccaccini, R El-Gendy
{"title":"模拟牙周组织的双层组织工程体外模型。","authors":"A Khadre, E Lm Raif, S Junaid, O M Goudouri, W Refaat, A Ramadan, A R Boccaccini, R El-Gendy","doi":"10.22203/eCM.v042a17","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complexity of the structure of the tooth periodontium, regeneration of the full tooth attachment is not a trivial task. There is also a gap in models that can represent human tooth attachment in vitro and in vivo. The aim of this study was to develop a bilayered in vitro construct that simulated the tooth periodontal ligament and attached alveolar bone, for the purpose of tissue regeneration and investigation of physiological and orthodontic loading. Two types of materials were used to develop this construct: sol-gel 60S10Mg derived scaffold, representing the hard tissue component of the periodontium, and commercially available Geistlich Bio-Gide® collagen membrane, representing the soft tissue component of the tooth attachment. Each scaffold was dynamically seeded with human periodontal ligament cells (HPDLCs). Scaffolds were either cultured separately, or combined in a bilayered construct, for 2 weeks. Characterisation of the individual scaffolds and the bilayered constructs included biological characterisation (cell viability, scanning electron microscopy to confirm cell attachment, gene expression of periodontium regeneration markers), and mechanical characterisation of scaffolds and constructs. HPDLCs enjoyed a biocompatible 3-dimensional environment within the bilayered construct components. There was no drop in cellular gene expression in the bilayered construct, compared to the separate scaffolds.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"232-245"},"PeriodicalIF":3.2000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A bilayered tissue engineered in vitro model simulating the tooth periodontium.\",\"authors\":\"A Khadre, E Lm Raif, S Junaid, O M Goudouri, W Refaat, A Ramadan, A R Boccaccini, R El-Gendy\",\"doi\":\"10.22203/eCM.v042a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the complexity of the structure of the tooth periodontium, regeneration of the full tooth attachment is not a trivial task. There is also a gap in models that can represent human tooth attachment in vitro and in vivo. The aim of this study was to develop a bilayered in vitro construct that simulated the tooth periodontal ligament and attached alveolar bone, for the purpose of tissue regeneration and investigation of physiological and orthodontic loading. Two types of materials were used to develop this construct: sol-gel 60S10Mg derived scaffold, representing the hard tissue component of the periodontium, and commercially available Geistlich Bio-Gide® collagen membrane, representing the soft tissue component of the tooth attachment. Each scaffold was dynamically seeded with human periodontal ligament cells (HPDLCs). Scaffolds were either cultured separately, or combined in a bilayered construct, for 2 weeks. Characterisation of the individual scaffolds and the bilayered constructs included biological characterisation (cell viability, scanning electron microscopy to confirm cell attachment, gene expression of periodontium regeneration markers), and mechanical characterisation of scaffolds and constructs. HPDLCs enjoyed a biocompatible 3-dimensional environment within the bilayered construct components. There was no drop in cellular gene expression in the bilayered construct, compared to the separate scaffolds.</p>\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\"42 \",\"pages\":\"232-245\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v042a17\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v042a17","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
A bilayered tissue engineered in vitro model simulating the tooth periodontium.
Due to the complexity of the structure of the tooth periodontium, regeneration of the full tooth attachment is not a trivial task. There is also a gap in models that can represent human tooth attachment in vitro and in vivo. The aim of this study was to develop a bilayered in vitro construct that simulated the tooth periodontal ligament and attached alveolar bone, for the purpose of tissue regeneration and investigation of physiological and orthodontic loading. Two types of materials were used to develop this construct: sol-gel 60S10Mg derived scaffold, representing the hard tissue component of the periodontium, and commercially available Geistlich Bio-Gide® collagen membrane, representing the soft tissue component of the tooth attachment. Each scaffold was dynamically seeded with human periodontal ligament cells (HPDLCs). Scaffolds were either cultured separately, or combined in a bilayered construct, for 2 weeks. Characterisation of the individual scaffolds and the bilayered constructs included biological characterisation (cell viability, scanning electron microscopy to confirm cell attachment, gene expression of periodontium regeneration markers), and mechanical characterisation of scaffolds and constructs. HPDLCs enjoyed a biocompatible 3-dimensional environment within the bilayered construct components. There was no drop in cellular gene expression in the bilayered construct, compared to the separate scaffolds.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.