鼠颌下腺发育过程中转座因子(TEs)的差异调控。

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY Mobile DNA Pub Date : 2021-10-22 DOI:10.1186/s13100-021-00251-1
Braulio Valdebenito-Maturana, Francisca Torres, Mónica Carrasco, Juan Carlos Tapia
{"title":"鼠颌下腺发育过程中转座因子(TEs)的差异调控。","authors":"Braulio Valdebenito-Maturana,&nbsp;Francisca Torres,&nbsp;Mónica Carrasco,&nbsp;Juan Carlos Tapia","doi":"10.1186/s13100-021-00251-1","DOIUrl":null,"url":null,"abstract":"<p><p>The submandibular gland (SG) is a relatively simple organ formed by three cell types: acinar, myoepithelial, and an intricate network of duct-forming epithelial cells, that together fulfills several physiological functions from assisting food digestion to acting as an immune barrier against pathogens. Successful SG organogenesis is the product of highly controlled and orchestrated genetic and transcriptional programs. Mounting evidence links Transposable Elements (TEs), originally thought to be selfish genetic elements, to different aspects of gene regulation in mammalian development and disease. To our knowledge, the role of TEs during murine SG organogenesis has not been studied. Using novel bioinformatic tools and publicly available RNA-Seq datasets, our results indicate that a significant number of genic and intergenic TEs are differentially expressed during the SG development. Furthermore, changes in expression of specific TEs correlated with that of genes involved in cellular division and differentiation, critical aspects for SG maturation. Altogether, we propose that TEs modulate gene networks that operate during SG development.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540199/pdf/","citationCount":"7","resultStr":"{\"title\":\"Differential regulation of transposable elements (TEs) during the murine submandibular gland development.\",\"authors\":\"Braulio Valdebenito-Maturana,&nbsp;Francisca Torres,&nbsp;Mónica Carrasco,&nbsp;Juan Carlos Tapia\",\"doi\":\"10.1186/s13100-021-00251-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The submandibular gland (SG) is a relatively simple organ formed by three cell types: acinar, myoepithelial, and an intricate network of duct-forming epithelial cells, that together fulfills several physiological functions from assisting food digestion to acting as an immune barrier against pathogens. Successful SG organogenesis is the product of highly controlled and orchestrated genetic and transcriptional programs. Mounting evidence links Transposable Elements (TEs), originally thought to be selfish genetic elements, to different aspects of gene regulation in mammalian development and disease. To our knowledge, the role of TEs during murine SG organogenesis has not been studied. Using novel bioinformatic tools and publicly available RNA-Seq datasets, our results indicate that a significant number of genic and intergenic TEs are differentially expressed during the SG development. Furthermore, changes in expression of specific TEs correlated with that of genes involved in cellular division and differentiation, critical aspects for SG maturation. Altogether, we propose that TEs modulate gene networks that operate during SG development.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540199/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-021-00251-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-021-00251-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 7

摘要

下颌骨腺(SG)是一个相对简单的器官,由三种细胞类型组成:腺泡细胞、肌上皮细胞和一个复杂的导管形成上皮细胞网络,它们共同完成从辅助食物消化到作为对抗病原体的免疫屏障的几种生理功能。成功的SG器官发生是高度控制和精心安排的遗传和转录程序的产物。转座因子(te)最初被认为是自私的遗传因子,但越来越多的证据表明,它与哺乳动物发育和疾病中基因调控的不同方面有关。据我们所知,TEs在小鼠SG器官发生中的作用尚未得到研究。利用新的生物信息学工具和公开的RNA-Seq数据集,我们的研究结果表明,在SG发育过程中,大量的基因和基因间te存在差异表达。此外,特异性te的表达变化与参与细胞分裂和分化的基因相关,而细胞分裂和分化是SG成熟的关键因素。总之,我们认为te调节在SG发育过程中运作的基因网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential regulation of transposable elements (TEs) during the murine submandibular gland development.

The submandibular gland (SG) is a relatively simple organ formed by three cell types: acinar, myoepithelial, and an intricate network of duct-forming epithelial cells, that together fulfills several physiological functions from assisting food digestion to acting as an immune barrier against pathogens. Successful SG organogenesis is the product of highly controlled and orchestrated genetic and transcriptional programs. Mounting evidence links Transposable Elements (TEs), originally thought to be selfish genetic elements, to different aspects of gene regulation in mammalian development and disease. To our knowledge, the role of TEs during murine SG organogenesis has not been studied. Using novel bioinformatic tools and publicly available RNA-Seq datasets, our results indicate that a significant number of genic and intergenic TEs are differentially expressed during the SG development. Furthermore, changes in expression of specific TEs correlated with that of genes involved in cellular division and differentiation, critical aspects for SG maturation. Altogether, we propose that TEs modulate gene networks that operate during SG development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
期刊最新文献
International congress on transposable elements (ICTE 2024) in Saint Malo: breaking down transposon waves and their impact. Accelerating de novo SINE annotation in plant and animal genomes. Association of hyperactivated transposon expression with exacerbated immune activation in systemic lupus erythematosus. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions. Correction: Transposon-derived introns as an element shaping the structure of eukaryotic genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1